980 resultados para Perturbation (Astronomy)
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
In the present work, we expanded the study done by Solorzanol(1) including the eccentricity of the perturbing body. The assumptions used to develop the single-averaged analytical model are the same ones of the restricted elliptic three-body problem. The disturbing function was expanded in Legendre polynomials up to fourth-order. After that, the equations of motion are obtained from the planetary equations and we performed a set of numerical simulations. Different initial eccentricities for the perturbing and perturbed body are considered. The results obtained perform an analysis of the stability of a near-circular orbits and investigate under which conditions this orbit remain near-circular.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.
Resumo:
We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions. with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality for non-renormalizable theories.
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
In the present work it is presented a semi-analytical and a numerical study of the perturbation caused in a spacecraft by a third body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second-order. The important reason for this procedure is to eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. It is presented an analysis of the stability of a near-circular orbit and a study to know under which conditions this orbit remains near-circular. A study of the equatorial orbits is also performed.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
In this paper, we prove a stability result about the asymptotic dynamics of a perturbed nonautonomous evolution equation in ℝn governed by a maximal monotone operator. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.