985 resultados para Peripheral nerve injury
Resumo:
To evaluate patients with transverse fractures of the shaft of the humerus treated with indirect reduction and internal fixation with plate and screws through minimally invasive technique. Inclusion criteria were adult patients with transverse diaphyseal fractures of the humerus closed, isolated or not occurring within 15 days of the initial trauma. Exclusion criteria were patients with compound fractures. In two patients, proximal screw loosening occurred, however, the fractures consolidated in the same mean time as the rest of the series. Consolidation with up to 5 degrees of varus occurred in five cases and extension deficit was observed in the patient with olecranon fracture treated with tension band, which was not considered as a complication. There was no recurrence of infection or iatrogenic radial nerve injury. It can be concluded that minimally invasive osteosynthesis with bridge plate can be considered a safe and effective option for the treatment of transverse fractures of the humeral shaft. Level of Evidence III, Therapeutic Study.
Resumo:
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, rapidly switching magnetic gradient fields that, in extreme cases, may be able to elicit nerve stimulation. This paper presents theoretical investigations into the spatial distribution of induced current inside human tissues caused by pulsed z-gradient fields. A variety of gradient waveforms have been studied. The simulations are based on a new, high-definition, finite-difference time-domain method and a realistic inhomogeneous 10-mm resolution human body model with appropriate tissue parameters. it was found that the eddy current densities are affected not only by the pulse sequences but by many parameters such as the position of the body inside the gradient set, the local biological material properties and the geometry of the body. The discussion contains a comparison of these results with previous results found in the literature. This study and the new methods presented herein will help to further investigate the biological effects caused by the switched gradient fields in a MRI scan. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Tumours of the brachial plexus region are rare and most publications are case reports or studies with a small series of patients. The aim of this study is to present our experience in managing these lesions. We review 18 patients with tumours in the brachial plexus region submitted to surgical treatment in a 6 year period, including their clinical presentation, neuro-imaging data, surgical findings and outcome. The tumours comprised a heterogeneous group of lesions, including schwannomas, neurofibromas, malignant peripheral nerve sheath tumour (MPNST), sarcomas, metastases, desmoids and an aneurysmal bone cyst. The most common presentation was an expanding lump (83.33%). Eleven tumours were benign and 7 were malignant. Neurofibromatosis was present in only 2 patients (11.11%). Gross total resection was achieved in 14 patients and sub-total resection in the others. Only 3 patients presented with new post-operative motor deficits. The incidence of complications was low (16.5 %). The majority of tumours were benign and most of them could be excised with a low incidence of additional deficits. Some of the malignant tumours could be controlled by surgery plus adjuvant therapy, but this category is still associated with high morbidity and mortality rates.
Resumo:
The compact myelin sheath represents one of the largest expanses of membrane-membrane contact in the body and, in the central nervous system, requires the myelin proteolipid protein (PLP) for assembly, To determine whether the molecular properties of PLP promote membrane adhesion and direct its subcellular localization in the absence of oligodendrocyte-specific targeting mechanisms, PLP was expressed in COS-I fibroblasts, Immunofluorescence staining indicated that PUP was translated effectively, transited the rough endoplasmic reticulum and Golgi apparatus, was delivered to the cell surface, and was endocytosed, In the plasma membrane, the PLP distribution was patchy and only sporadically coincided with sites of membrane-membrane contact between PLP-expressing cells, PLP was not randomly distributed, however, but correlated closely with microfilament locations in leading edge membranes and microvilli, as demonstrated by phalloidin double labeling, Our results indicate that even in non-myelinating cells, PLP can be concentrated in membranes associated with movement and growth, and suggest possible roles for the actin cytoskeleton in PLP localization, As PLP, DM20, and the DM20-like M6 protein all associate with actin-enriched membranes, this may be a common feature of PLP/DM20 gene family members. (C) 1997 Wiley-Liss, Inc.
Resumo:
Background. Previous works showed potentially beneficial effects of a single session of peripheral nerve sensory stimulation (PSS) on motor function of a paretic hand in patients with subacute and chronic stroke. Objective. To investigate the influence of the use of different stimulus intensities over multiple sessions (repetitive PSS [RPSS]) paired with motor training. Methods. To address this question, 22 patients were randomized within the second month after a single hemispheric stroke in a parallel design to application of 2-hour RPSS at 1 of 2 stimulus intensities immediately preceding motor training, 3 times a week, for 1 month. Jebsen-Taylor test (JTT, primary endpoint measure), pinch force, Functional Independence Measure (FIM), and corticomotor excitability to transcranial magnetic stimulation were measured before and after the end of the treatment month. JTT, FIM scores, and pinch force were reevaluated 2 to 3 months after the end of the treatment. Results. Baseline motor function tests were comparable across the 2 RPSS intensity groups. JTT improved significantly in the lower intensity RPSS group but not in the higher intensity RPSS group at month 1. This difference between the 2 groups reduced by months 2 to 3. Conclusions. These results indicate that multiple sessions of RPSS could facilitate training effects on motor function after subacute stroke depending on the intensity of stimulation. It is proposed that careful dose-response studies are needed to optimize parameters of RPSS stimulation before designing costly, larger, double-blind, multicenter clinical trials.
Resumo:
Leprosy is a curable chronic granulomatous infectious disease caused by the bacillus Mycobacterium leprae. This organism has a high affinity for skin and peripheral nerve cells. In the evolution of infections, the immune status of patients determines the disease expression. Dendritic cells are antigen-presenting cells that phagocytose particles and microorganisms. In skin, dendritic cells are represented by epidermal Langerhans cells and dermal dendrocytes, which can be identified by expression of CD1a and factor XIIIa (FXIIIa). In the present study, 29 skin samples from patients with tuberculoid (13 biopsies) and lepromatous (16 biopsies) leprosy were analyzed by immunohistochemistry using antibodies to CD1a and FXIIIa. Quantitative analysis of labeling pattern showed a clear predominance of dendritic cells in tuberculoid leprosy. Difference between the number of positive cells of immunohistochemistry for the CD1a and FXIIIa staining observed in this study indicates a role for dendritic cells in the cutaneous response to leprosy. Dendritic cells may be a determinant of the course and clinical expression of the disease.
Resumo:
To develop a rat model of erectile dysfunction (ED) after cavernous nerve injury. Given the great similarity between the anatomical structure of the cavernous nerve in rats and humans, 24 rats underwent dissections and the cavernous nerves were identified with the aid of an operating microscope. Then the rats were randomized into two groups: sham-operated controls and a bilateral cavernous nerve section group. At 3 months after surgery, the rats were evaluated for their response to an apomorphine challenge. The erectile response after an apomorphine challenge was normal in all the control rats, while there were no erections in the bilateral injured group. The rat major autonomic ganglion and its cavernous nerve can be identified with the aid of a microscope. Rats are inexpensive and easy to handle, thus a good animal for developing an ED model of cavernous nerve injury. In the present study, the rats with cavernous nerve injury lost erectile capacity in a reliable and reproducible fashion. Because of the great similarity between the cavernous nerve of rats and humans, one may consider this technique as a reliable experimental model for studying ED after radical prostatectomy.
Resumo:
Objective-To evaluate the efficacy of cryosurgery for treatment of skin and subcutaneous tumors in dogs and cats. Study Design-Prospective study. Animals-Dogs (n = 20), cats (10). Methods-Cutaneous or subcutaneous tumors were treated by liquid nitrogen cryosurgical spray (1 cm from target tissue at 90 degrees until a 5-mm halo of frozen tissue was achieved) for 15-60 seconds. Malignant lesions had 3 freeze-thaw cycles benign tumors, 2 cycles. The second or third freeze cycle was performed after complete thaw of the preceding freeze. Wounds healed by second intention. Follow-up was weekly for 1 month and then twice monthly until wounds healed, and final outcome was determined by telephone interview of owners. Results-Tumor size ranged from 0.3 to 11 cm, diameter with 28 (60%) being 0.3-1 cm; 8 (17%) 1.1-3cm, and 11 (23%) >3.4cm. Complications included edema, erythema and for extremity lesions, pain and lameness. Treated lesions (n = 47) had an overall remission of 98% (mean follow-up.. 345 +/- 172.02 days [range, 150-750 days]). One malignant peripheral nerve sheath tumor recurred 7 months after cryosurgical treatment. Conclusion-Cryo surgery is an efficient method for treatment of skin and subcutaneous tumors in dogs and cats. Clinical Relevance-Cryosurgical ablation is an effective means of treating small cutaneous or subcutaneous tumors in dogs and cats, especially in older animals where wound closure or cosmetic outcome might limit surgical excision alone. (C) Copyright 2008 by The American College of Veterinary Surgeons.
Resumo:
Neurofibroma is a benign peripheral nerve sheath tumor that can be occasionally found in the head and neck region as multiple lesions associated with neurofibromatosis type 1 (NF-1) or as a solitary tumor. The real frequency of isolated neurofibromas not associated with NF is uncertain, and lesions in the temporal region are extremely rare. The aim of the current article was to report an unusual case of solitary neurofibroma localized in the temporal and infratemporal regions with 10 years of evolution in a female patient without any other manifestation or familiar history of NF-1. The patient underwent surgical treatment for complete excision of the lesion, and the 2-year follow-up revealed no signs of recurrence.
Resumo:
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, time-varying gradient magnetic fields that may be able to induce electric fields (E-fields)/currents in tissues approaching the level of physiological significance. In this work we present theoretical investigations into induced E-fields in the thorax, and evaluate their potential influence on cardiac electric activity under the assumption that the sites of maximum E-field correspond to the myocardial stimulation threshold (an abnormal circumstance). Whole-body cylindrical and planar gradient coils were included in the model. The calculations of the induced fields are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, whole-body model. The potential for cardiac stimulation was evaluated using an electrical model of the heart. Twelve-lead electrocardiogram (ECG) signals were simulated and inspected for arrhythmias caused by the applied fields for both healthy and diseased hearts. The simulations show that the shape of the thorax and the conductive paths significantly influence induced E-fields. In healthy patients, these fields are not sufficient to elicit serious arrhythmias with the use of contemporary gradient sets. However, raising the strength and number of repeated switching episodes of gradients, as is certainly possible in local chest gradient sets, could expose patients to increased risk. For patients with cardiac disease, the risk factors are elevated. By the use of this model, the sensitivity of cardiac pathologies, such as abnormal conductive pathways, to the induced fields generated by an MRI sequence can be investigated. (C) 2003 Wiley-Liss, Inc.
Resumo:
Introdução: Existem diversas causas e/ou estruturas responsáveis pela dor lombar, com ou sem irradiação para o membro inferior, pelo que o sucesso no tratamento deste problema depende do diagnóstico diferencial e, consequentemente, da escolha do tratamento mais adequado a cada situação. Objectivo: avaliar os efeitos da terapia manual ortopédica num caso de lombociatalgia, cujo mecanismo dominante é a sensibilização nervosa periférica, no final do tratamento e 8 semanas após a conclusão do mesmo, e descrever a avaliação e intervenção realizadas. Métodos: foi realizado um estudo de caso acerca dum utente do sexo masculino, com 35 anos de idade, e com um quadro clínico compatível com uma situação de sensibilização nervosa periférica. A intervenção consistiu em 5 sessões distribuídas ao longo de 3 semanas. Como instrumentos de avaliação foram utilizados o 'Índice de incapacidade de Oswestry para a lombalgia’ e a Escala Numérica da Dor (END), que foram aplicados na primeira e na última sessões de tratamento e 8 semanas após esta. Resultados: Após o tratamento, verificou-se uma diminuição da incapacidade (de 74 para 2/100) e da intensidade da dor (dor matinal: de 4 para 1/10; dor associada a actividades/posturas em flexão: de 7-8 para 2/10; dor ao fim do dia: de 3-4 para 1-2/10). Oito semanas após a conclusão do tratamento estes valores mantinham-se praticamente inalterados. Conclusão: O processo de raciocínio clínico utilizado na avaliação e intervenção deste caso foi demonstrado. Os resultados obtidos sugerem que a terapia manual ortopédica poderá ser eficaz na diminuição da dor e da incapacidade em casos de lombociatalgia por sensibilização nervosa periférica, e que os ganhos se poderão manter 8 semanas após a conclusão do tratamento. Este estudo pode constituir uma evidência preliminar a favor da terapia manual ortopédica no tratamento deste subgrupo de utentes.