930 resultados para PROINFLAMMATORY CYTOKINE EXPRESSION
Resumo:
The proinflammatory cytokine IL-18 was investigated for its role in human myocardial function. An ischemia/reperfusion (I/R) model of suprafused human atrial myocardium was used to assess myocardial contractile force. Addition of IL-18 binding protein (IL-18BP), the constitutive inhibitor of IL-18 activity, to the perifusate during and after I/R resulted in improved contractile function after I/R from 35% of control to 76% with IL-18BP. IL-18BP treatment also preserved intracellular tissue creatine kinase levels (by 420%). Steady-state mRNA levels for IL-18 were elevated after I/R, and the concentration of IL-18 in myocardial homogenates was increased (control, 5.8 pg/mg vs. I/R, 26 pg/mg; P < 0.01). Active IL-18 requires cleavage of its precursor form by the IL-1β-converting enzyme (caspase 1); inhibition of caspase 1 also attenuated the depression in contractile force after I/R (from 35% of control to 75.8% in treated atrial muscle; P < 0.01). Because caspase 1 also cleaves the precursor IL-1β, IL-1 receptor blockade was accomplished by using the IL-1 receptor antagonist. IL-1 receptor antagonist added to the perifusate also resulted in a reduction of ischemia-induced contractile dysfunction. These studies demonstrate that endogenous IL-18 and IL-1β play a significant role in I/R-induced human myocardial injury and that inhibition of caspase 1 reduces the processing of endogenous precursors of IL-18 and IL-1β and thereby prevents ischemia-induced myocardial dysfunction.
Resumo:
Interleukin 1 receptor antagonist (IL-1ra) is a cytokine whose only known action is competitive inhibition of the binding of interleukin 1 (IL-1) to its receptor. To investigate the physiological roles of endogenously produced IL-1ra, we generated mice that either lack IL-1ra or overproduce it under control of the endogenous promoter. Mice lacking IL-1ra have decreased body mass compared with wild-type controls. They are more susceptible than controls to lethal endotoxemia but are less susceptible to infection with Listeria monocytogenes. Conversely, IL-1ra overproducers are protected from the lethal effects of endotoxin but are more susceptible to listeriosis. Serum levels of IL-1 following an endotoxin challenge are decreased in IL-1ra nulls and increased in IL-1ra overproducers in comparison to controls. These data demonstrate critical roles for endogenously produced IL-1ra in growth, responses to infection and inflammation, and regulation of cytokine expression.
Resumo:
Comparison of immune responses to infection by a pathogenic or a nonpathogenic immunodeficiency virus in macaques may provide insights into pathogenetic events leading to simian AIDS. This work is aimed at exploring cytokine expression during infection by simian immunodeficiency virus (SIV). We used semiquantitative reverse transcription-PCR to monitor interleukin (IL)-2/interferon (IFN)-gamma (Th1-like), and IL-4/IL-10 (Th2-like) expression in unmanipulated peripheral blood mononuclear cells (PBMCs), during the acute phase of infection of eight cynomolgus macaques (Macaca fascicularis) with a pathogenic primary isolate of SIVmac251 (full-length nef), and of four other cynomolgus macaques by an attenuated molecular clone of SIVmac251 (nef-truncated). All the monkeys became infected, as clearly shown by the presence of infected PBMCs and by seroconversion. Nevertheless, PBMC-associated virus loads and p27 antigenemia in monkeys infected by the attenuated virus clone remained lower than those observed in animals infected with the pathogenic SIVmac251 isolate. A rise of IL-10 mRNA expression occurred in both groups of monkeys coincident with the peak of viral replication. In monkeys infected with the pathogenic SIVmac251, IL-2, IL-4, and IFN-gamma mRNAs were either weakly detectable or undetectable. On the contrary, animals infected by the attenuated virus exhibited an overexpression of these cytokine mRNAs during the first weeks after inoculation. The lack of expression of these cytokines in monkeys infected with the pathogenic primary isolate may reflect early immunodeficiency.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) is a potent inhibitory agent in all major forms of inflammation. To identify a potential mechanism of antiinflammatory action of alpha-MSH, we tested its effects on production of nitric oxide (NO), believed to be a mediator common to all forms of inflammation. We measured NO and alpha-MSH production in RAW 264.7 cultured murine macrophages stimulated with bacterial lipopolysaccharide and interferon gamma. alpha-MSH inhibited production of NO, as estimated from nitrite production and nitration of endogenous macrophage proteins. This occurred through inhibition of production of NO synthase II protein; steady-state NO synthase II mRNA abundance was also reduced. alpha-MSH increased cAMP accumulation in RAW cells, characteristic of alpha-MSH receptors in other cell types. RAW cells also expressed mRNA for the primary alpha-MSH receptor (melanocortin 1). mRNA for proopiomelanocortin, the precursor molecular of alpha-MSH, was expressed in RAW cells, and tumor necrosis factor alpha increased production and release of alpha-MSH. These results suggest that the proinflammatory cytokine tumor necrosis factor alpha can induce macrophages to increase production of alpha-MSH, which then becomes available to act upon melanocortin receptors on the same cells. Such stimulation of melanocortin receptors could modulate inflammation by inhibiting the production of NO. The results suggest that alpha-MSH is an autocrine factor in macrophages which modulates inflammation by counteracting the effects of proinflammatory cytokines.
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
Experimental models of orthotopic liver transplantation (OLT) have shown that the very early events post-OLT are critical in distinguishing immunogenic and tolerogenic reactions. In rodents, increased leukocyte apoptosis and cytokine expression have been demonstrated in tolerogenic strain combinations. Information from human OLT recipients is less abundant. The aim of this study was to determine the amount of early leukocyte activation and apoptosis following human OLT, and to correlate this with subsequent rejection status. Peripheral blood mononuclear cells (PBMC) were isolated from 76 patients undergoing OLT - on the day prior, 5 hrs after reperfusion (day 0), and 18-24 hrs post-OLT (day 1). The mean level of apoptotic PBMCs on post OLT day 1 was higher than healthy recipients (0.9% +/- 0.2 vs. 0.2% +/- 0.1, p = 0.013). Apoptosis was greater in nonrejecting (NR) (1.1% +/- 0.3) compared with acutely-rejecting (R) (0.3% +/- 0.1, p = 0.021) patients. On day 1, PBMC from NR patients had increased expression of IFN-gamma (p = 0.006), IL-10 (p = 0.016), and CD40 ligand (p = 0.02) compared with R. Donor cell chimerism on day 1 did not differ between the groups indicating that this was unlikely to account for increased PBMC apoptosis in the NR group. Interestingly, the level of chimerism on day 0 was significantly higher in NR (3.8% +/- 0.6) compared with R (1.2% +/- 0.4, p = 0.004) patients and there was a close correlation between chimerism on day 0 and cytokine expression on day 1. These results imply that similar mechanisms are occurring in the human liver to promote graft acceptance as in the experimental models of liver transplantation and suggest that strategies that promote liver transplant acceptance in rodents might be applicable to humans.
Resumo:
Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24(+)Vbeta11(+) NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4(+) NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.
Resumo:
C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.
Resumo:
Background - Our previous studies showed that the direct injection of an adenovirus construct expressing urokinase-type plasminogen activator (uPA) into experimental venous thrombi significantly reduces thrombus weight. The systemic use of adenovirus vectors is limited by inherent hepatic tropism and inflammatory response. As macrophages are recruited into venous thrombi, it is reasonable to speculate that these cells could be used to target the adenovirus uPA (ad-uPA) gene construct to the thrombus. The aims of this study were to determine whether macrophages transduced with ad-uPA have increased fibrinolytic activity and whether systemic injection of transduced cells could be used to target uPA expression to the thrombus and reduce its size. Methods - The effect of up-regulating uPA was examined in an immortalized macrophage cell line (MM6) and macrophages differentiated from human blood monocyte-derived macrophages (HBMMs). Cells were infected with ad-uPA or blank control virus (ad-blank). Fibrinolytic mediator expression, cell viability, and cytokine expression were measured by activity assays and enzyme-linked immunosorbent assays. Monocyte migration was measured using a modified Boyden chamber assay. A model of venous thrombosis was developed and characterized in mice with severe combined immunodeficiency (SCID). This model was used to study whether systemically administered macrophages over-expressing uPA reduced thrombus size. Uptake of HBMMs into the thrombus induced in these mice was confirmed by a combination of PKH2-labeled cell tracking and colocalization with human leukocyte antigen (HLA) by immunohistology. Results - Compared with ad-blank, treated HBMMs transduction with ad-uPA increased uPA production by >1000-fold (P = .003), uPA activity by 150-fold (P = .0001), and soluble uPA receptor (uPAR) by almost twofold (P = .043). Expression of plasminogen activator inhibitor (PAI-1) and PAI-2 was decreased by about twofold (P = .011) and threefold (P = .005), respectively. Up-regulation of uPA had no effect on cell viability or inflammatory cytokine production compared with ad-blank or untreated cells. Ad-uPA transduction increased the migration rate of HBMMs (about 20%, P = .03) and MM6 cells (>twofold, P = .005) compared with ad-blank treated controls. Human macrophage recruitment into the mouse thrombus was confirmed by the colocalization of HLA with the PKH2-marked cells. Systemic injection of uPA-up-regulated HBMMs reduced thrombus weight by approximately 20% compared with ad-blank (P = .038) or sham-treated controls (P = .0028). Conclusion - Transduction of HBBM with ad-uPA increases their fibrinolytic activity. Systemic administration of uPA up-regulated HBBMs reduced thrombus size in an experimental model of venous thrombosis. Alternative methods of delivering fibrinolytic agents are worth exploring.
Resumo:
Little is known of the functions of caspases in mediating the surface changes required for phagocytosis of dying cells. Here we investigate the role played by the effector caspase, caspase-3 in this process using the caspase-3-defective MCF-7 breast carcinoma line and derived caspase-3-expressing transfectants. Our results indicate that, while certain typical features of apoptosis induced by etoposide – namely classical morphological changes and the ability to degrade DNA into oligonucleosomal fragments – are caspase-3-dependent, loss of cell adhesion to plastic and the capacity to interact with, and to be phagocytosed by, human monocyte-derived macrophages – both by CD14-dependent and CD14-independent mechanisms – do not require caspase-3. Furthermore, both etoposide-induced caspase-3-positive and -negative MCF-7 cells suppressed proinflammatory cytokine release by macrophages. These results demonstrate directly that cell surface changes that are sufficient for anti-inflammatory clearance by human macrophages can be regulated independently of stereotypical features of the apoptosis programme that require caspase-3.
Resumo:
Papillon-Lefévre syndrome is a rare, inherited, autosomal-recessive disease, characterized by palmoplantar keratosis and severe prepubertal periodontitis, leading to premature loss of all teeth. Papillon-Lefévre syndrome is caused by a mutation in the cathepsin C gene, resulting in complete loss of activity and subsequent failure to activate immune response proteins. Periodontitis in Papillon-Lefévre syndrome is thought to arise from failure to eliminate periodontal pathogens as a result of cathepsin C deficiency, although mechanistic pathways remain to be elucidated. The aim of this study was to characterize comprehensively neutrophil function in Papillon-Lefévre syndrome. Peripheral blood neutrophils were isolated from 5 patients with Papillon-Lefévre syndrome, alongside matched healthy control subjects. For directional chemotactic accuracy, neutrophils were exposed to the chemoattractants MIP-1α and fMLP and tracked by real-time videomicroscopy. Reactive oxygen species generation was measured by chemiluminescence. Neutrophil extracellular trap formation was assayed fluorometrically, and proinflammatory cytokine release was measured following overnight culture of neutrophils with relevant stimuli. Neutrophil serine protease deficiencies resulted in a reduced ability of neutrophils to chemotax efficiently and an inability to generate neutrophil extracellular traps. Neutrophil extracellular trap-bound proteins were also absent in Papillon-Lefévre syndrome, and Papillon-Lefévre syndrome neutrophils released higher levels of proinflammatory cytokines in unstimulated and stimulated conditions, and plasma cytokines were elevated. Notably, neutrophil chemoattractants MIP-1α and CXCL8 were elevated in Papillon-Lefévre syndrome neutrophils, as was reactive oxygen species formation. We propose that relentless recruitment and accumulation of hyperactive/reactive neutrophils (cytokines, reactive oxygen species) with increased tissue transit times into periodontal tissues, alongside a reduced antimicrobial capacity, create a locally destructive chronic inflammatory cycle in Papillon-Lefévre syndrome.
Resumo:
Preeclampsia is a disease specific of human pregnancy that affects 3-8% of pregnant women, and it is one of the three leading causes of maternal mortality and morbidity. The disease is characterized by hypertension and proteinuria after the 20th week of gestation. The risk factors for this disease are not completely understood but appear to include dysregulation of the immune response arising from defects in placentation, environmental and genetic factors. This study aimed to determine whether the variation in the amount of proinflammatory cytokine receptors IL-1R2, IL-6R and TNF-αR1 would be involved in preeclampsia. They were recruited women with preeclampsia (n=24) and women who evolved during pregnancy without changes in blood pressure (n=12) were recruited. Clinical and laboratory data were collected. The cytokine receptors (IL-1R2, TNF-αR1 and IL-6R) were assessed in mononuclear cells isolated from peripheral blood using flow cytometry (Control = 8; PE = 24). C-reactive protein (CRP) was determined by CRP ultrasensitive method (Control = 7; PE = 18) was performed using sera pregnant women. Women with preeclampsia had higher weight at the beginning of the pregnancy (p=0.0171) and lower gestational age at delivery (0.0008). Classical monocytes were decreased in preeclampsia but not intermediate or non-classical monocytes. The frequency of IL-1R2 pro inflammatory cytokine receptors is decreased in women with PE only in the subpopulation of non-classical monocytes (p = 0.0011). TNF-αR1 receptor and IL-6R, had a decreased frequency in the three subpopulations of monocyte (classic, intermediate and non-classical) when compared to women with normal pregnancy. An increase in IL-1R2 receptor in TCD4+ lymphocytes, but a decrease in TNF-receptor and IL-6R in women with preeclampsia were found. No differences in the frequency of those receptors in CD3+/CD8+ in preeclampsia. There was no difference in C-reactive protein in preeclampsia. The reduction in the amount of IL-1R2, TNF- αR1 and IL-6R monocytes and lymphocytes can be involved in the regulation of inflammation observed in preeclampsia, contributing to disease.
Resumo:
AIMS: Hydrogen sulfide (H2S) is a vasoactive gasotransmitter that is endogenously produced in the vasculature by the enzyme cystathionine γ-lyase (CSE). However, the importance of CSE activity and local H2S generation for ischaemic vascular remodelling remains completely unknown. In this study, we examine the hypothesis that CSE critically regulates ischaemic vascular remodelling involving H2S-dependent mononuclear cell regulation of arteriogenesis. METHODS AND RESULTS: Arteriogenesis including mature vessel density, collateral formation, blood flow, and SPY angiographic blush rate were determined in wild-type (WT) and CSE knockout (KO) mice at different time points following femoral artery ligation (FAL). The role of endogenous H2S in regulation of IL-16 expression and subsequent recruitment of monocytes, and expression of VEGF and bFGF in ischaemic tissues, were determined along with endothelial progenitor cell (CD34/Flk1) formation and function. FAL of WT mice significantly increased CSE activity, expression and endogenous H2S generation in ischaemic tissues, and monocyte infiltration, which was absent in CSE-deficient mice. Treatment of CSE KO mice with the polysulfide donor diallyl trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine expression. Importantly, exogenous H2S therapy restored nitric oxide (NO) bioavailability in CSE KO mice that was responsible for monocyte recruitment and arteriogenesis. CONCLUSION: Endogenous CSE/H2S regulates ischaemic vascular remodelling mediated during hind limb ischaemia through NO-dependent monocyte recruitment and cytokine induction revealing a previously unknown mechanism of arteriogenesis.
Resumo:
Laparoscopic surgery is associated with reduced surgical trauma, and less acute phase response, as compared with open surgery. Cytokines are important regulators of the biological response to surgical and anesthetic stress. The aim of this study was to determine if CO2 pneumoperitoneum would change cytokine expression, gas parameters and leukocyte count in septic rats. Methods: Wistar rats were randomly assigned to five groups: control (anesthesia only), laparotomy, CO2 pneumoperitoneum, cecum ligation and puncture by laparotomy, and laparoscopic cecum ligation and puncture. After 30 min of the procedures, arterial blood samples were obtained to determine leukocytes subpopulations by hemocytometer. TNFα, IL-1β, IL-6 were determined in intraperitoneal fluid (by ELISA). Gas parameters were measured on arterial blood, intraperitoneal and subperitoneal exsudates. Results: Peritoneal TNFα, IL-1β and IL-6 concentrations were lower in pneumoperitoneum rats than in all other groups (p<0.05). TNFα, IL-1β and IL-6 expression was lower in the laparoscopic than in laparotomic sepsis (p<0.05). Rats from laparoscopic cecum ligation and puncture group developed significant hypercarbic acidosis in blood and subperitoneal fluid when compared to open procedure group. Total white blood cells and lymphocytes were significantly lower in laparoscopic cecum ligation and puncture rats than in the laparotomic (p<0.01). Nevertheless, the laparotomic cecum ligation rats had a significant increase in blood neutrophils and eosinophils when compared with controls (p<0.05). Conclusions: This study demonstrates that the CO2 pneumoperitoneum reduced the inflammatory response in an animal model of peritonitis with respect to intraperitoneal cytokines, white blood cell count and clinical correlates of sepsis. The pneumoperitoneum produced hypercarbic acidosis in septic animals
Resumo:
To explore phenotype and function of NK cells in kidney transplant recipients, we investigated the peripheral NK cell repertoire, capacity to respond to various stimuli and impact of immunosuppressive drugs on NK cell activity in kidney transplant recipients. CD56(dim) NK cells of kidney transplanted patients displayed an activated phenotype characterized by significantly decreased surface expression of CD16 (p=0.0003), CD226 (p<0.0001), CD161 (p=0.0139) and simultaneously increased expression of activation markers like HLA-DR (p=0.0011) and CD25 (p=0.0015). Upon in vitro stimulation via Ca++-dependent signals, down-modulation of CD16 was associated with induction of interferon (IFN)-gamma expression. CD16 modulation and secretion of NFAT-dependent cytokines such as IFN-gamma, TNF-alpha, IL-10 and IL-31 were significantly suppressed by treatment of isolated NK cells with calcineurin inhibitors but not with mTOR inhibitors. In kidney transplant recipients, IFN-gamma production was retained in response to HLA class I-negative target cells and to non-specific stimuli, respectively. However, secretion of other cytokines like IL-13, IL-17, IL-22 and IL-31 was significantly reduced compared to healthy donors. In contrast to suppression of cytokine expression at the transcriptional level, cytotoxin release, i.e. perforin, granzyme A/B, was not affected by immunosuppression in vitro and in vivo in patients as well as in healthy donors. Thus, immunosuppressive treatment affects NK cell function at the level of NFAT-dependent gene expression whereby calcineurin inhibitors primarily impair cytokine secretion while mTOR inhibitors have only marginal effects. Taken together, NK cells may serve as indicators for immunosuppression and may facilitate a personalized adjustment of immunosuppressive medication in kidney transplant recipients.