993 resultados para PLASTIC ARTS
Resumo:
Cyclic plastic deformation of subgrade and other engineered layers is generally not taken into account in the design of railway bridge transition zones, although the plastic deformation is the governing factor of frequent track deterioration. Actual stress behavior of fine grained subgrade/embankment layers under train traffic is, however, difficult to replicate using the conventional laboratory test apparatus and techniques. A new type of torsional simple shear apparatus, known as multi-ring shear apparatus, was therefore developed to evaluate the actual stress state and the corresponding cyclic plastic deformation characteristics of subgrade materials under moving wheel load conditions. Multi-ring shear test results has been validated using a theoretical model test results; the capability of the multi-ring shear apparatus for replicating the cyclic plastic deformation characteristics of subgrade under moving train wheel load conditions is thus established. This paper describes the effects of principal stress rotation (PSR) of the subgrade materials to the cyclic plastic deformation in a railroad and impacts of testing methods in evaluating the influence of principal stress rotation to the track deterioration of rail track.
Resumo:
In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.
Resumo:
The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.
Resumo:
The report follows up on data and trends tabled in August 2015 that collected data from two key sources – six identified case study productions that have been tracked for eighteen months, and an online survey delivered to all APAM 2014 delegates. The comparative report has been constructed through an analysis of data reported from the August 2015 and the most recent online survey to all 2104 PM delegates conducted in late November 2015. The report highlights six key trends emerging from the data: The majority of survey respondents will return to APAM 2016; The central reason for attending is the networking opportunities the Market affords; Respondents are confident that a range of new relationships forged at the Market will afford long-term interest and buying opportunities and that as a result of the 2014 event, real touring outcomes were realised for some respondents; Respondents would like to see greater attention to a greater number of networking activities within the program to enable touring outcomes; The multi-venue model is still of concern, and is a recurrent issue from earlier surveys; The level of expense incurred by producers to present work at APAM. Throughout the report, extracted data from the online survey responses will be tabled to develop a narrative in response to the key research aims outlined in the Brisbane Powerhouse Tender document (2011). A full version of the collated responses to the survey questions can be found in the appendices of the report.
Resumo:
The creative work comprises six short digital screen stories and emerges from a collaboration between the Discipline of Film Screen and Animation at Queensland University of Technology and the Centre for Social and Creative Media at University of Goroka, funded via the Department of Foreign Affairs and Trade's Australia Awards Fellowship. Six fellows traveled from Papua New Guinea to Brisbane for a two-week intensive course to learn the advanced skills necessary in order to create media that will empower women and girls to make more of their own economies in Papua New Guinea, and increase the representation of women and their well-being through leadership and decision-making. The resulting creative work is evidence of innovative media teaching-making methods designed to build human and cultural assets in PNG and address the increasing demand for media materials driven by the influx of mobile phones and internet services. The creative work provides a platform to directly address and positively impact gender issues in PNG and builds on the success of the Pawa Meri project, which trained six female directors to tell stories of women in leadership roles in PNG. One of the directors was a producer of this creative work. The creative work frames but problematises the complex issues influencing gender equity through the selection of content and narrative structures in ways which address the dynamics of male/female relationships and power in PNG society and will include strategies to illustrate transformed male and female behaviours. The creative work adopts a scaffolded approach, incorporating the findings of the Train the Trainer approach developed by UoG and QUT for the Life Drama research project. The creative work takes into account current developmental themes and approaches in the production of rich media products, and skills the key participants so that they are able to in turn train others in the wider community. The creative work was presented to partners and key stakeholders on 3 July 2015 at the Glasshouse, QUT Creative Industries Precinct and at the Dean’s Research Seminar Poster Exhibition 15 July 2015 at Room 212-213, Level 2, J Block, Gardens Point QUT and subsequent eBook. It has since returned to PNG to be showcased and distributed, and the skills and strategies disseminated.
Resumo:
The Writing the Digital Futures project brings together international knowledge and expertise in digital writing to cement Queensland as a centre of innovation in writing and publishing within Australia. The purpose of the digital futures project is to change community and professional perceptions of storytelling and publishing in a digital age, with particular emphasis on transmedia/multi-platform storytelling.
Resumo:
Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.
Resumo:
Plastic limit of fine-grained soils is conventionally determined in the laboratory by the soil thread rolling method. Many adverse comments have been recorded in the geotechnical engineering literature on the method about its reproducibility and operator dependency. The presen experimental study, which is based on a well-planned and meticulously executed experimental program, critically evaluates the effect of size of the rolled soil thread on the plastic limit of fine-grained soil and the operator dependency of the results. The results have shown that if the plastic limit tests are performed by a trained operator, then consistent results can be obtained and that the effect of size of the rolled soil thread on plastic limit is negligibly small.
Resumo:
The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.
Resumo:
Verso: Internationale Buchkunstausstellung Leipzing 1927. Eroeffnungsfeier in der Aula der Universitaet Prof. Hugo Steiner-Prag, Praesident der Austellung und I. Vors. des Vereins "Deutsche Buchkuenstler" haelt die Festrede
Resumo:
Verso: Internationale Buchkunstausstellung1927. Abteilung Hugo Steiner-Prag
Resumo:
Digital Image
Resumo:
Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.