876 resultados para PHOTO-CROSS-LINKING
Resumo:
"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Nesta dissertação, foram estudadas a preparação e a caracterização debionanocompósitos à base de gelatina e magnetita. Sacarose foi empregada comoagente de reticulação e gelatina tipo A e gelatina tipo B foram comparadas nautilização para a preparação das microesferas por meio de emulsão água-em-óleo.As microesferas foram caracterizadas por VSM, DSC, TGA, FTIR, testes deinchamento, espectroscopia de absorção atômica, microscopia ótica e microscopiaeletrônica de varredura. Um planejamento de experimentos variando-se aconcentração de gelatina e de sacarose, a temperatura e a velocidade de agitaçãofoi realizado a fim de encontrar quais parâmetros influenciam o diâmetro dasmicroesferas. A concentração de gelatina e velocidade de agitação foram osparâmetros diretamente associados com os tamanhos de partículas. A distribuiçãode tamanho das partículas revelou que o diâmetro das microesferas variou de 5 a 60micrômetros, com predominância na faixa de 11 a 30 micrômetros. A extensão dareticulação foi aumentada com o aumento do tempo de aquecimento na etapa depreparação das microesferas. Todos os bionanocompósitos apresentaramsuperparamagnetismo. Os resultados mostraram que não há diferença significativa entre a utilização de gelatina do tipo A e gelatina do tipo B. Além disso, o estudo de reticulação degelatina revelou que, ao contrário do que diz a literatura, a sacarose não é umagente de reticulação para as cadeias proteicas, pois não foram encontradasevidências de uma reação química entre a sacarose e gelatina
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Single-chain technology (SCT) allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs) via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful "click" chemistry driving force for SCNP construction. By employing poly(methyl methacrylate)- (PMMA-) based copolymers bearing beta-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H-1 NMR) spectroscopy, dynamic light scattering (DLS), and elemental analysis (EA).
Resumo:
Formaldehyde is a very reactive compound capable of interacting with many functional groups of proteins including intermolecular and intramolecular cross-links of the molecules. The formation of cross-linking bonds may induce conformational change in proteins that favor further interaction of functional and hydrophobic groups. Formaldehyde which has been using illegally as a chemical preservative by some fish traders in our country. A study was carried out to determine the effects of irradiation (1.5 KGy) on formaldehyde concentration and nutritional (protein and lipid) changes of formalin (37% formaldehyde) treated fish (fresh) samples and found that the concentration of formaldehyde both in treated samples (0.37% formalin and 0.37% formalin with 1.5 KGy irradiation) were 37.0 µg/gm and 36.75 µg/gm. On the other hand, the amount of protein and lipid in treated samples before radiation (14.56% and 3.49%) and after radiation (14.15% and 3.25%). That means, radiation has no effect on the change of protein, lipid and formaldehyde.
Resumo:
本文选取比较常见的PP/EVA、PE/EVA共混体系作为增强交联研究的对象,研究了共混体系的增强交联规律,并针对目前普通使用的多官能团单体存在着与聚合物体系相容性差、易析出、高温挥发大的弱点,设计合成几种多官能团单体。此外,还研究了共混体系增强界面反应,讨论了增强界面反应的一般原理和增强界面反应对改善不相容共混体系相间粘附的作用影响。
Resumo:
聚合物材料以其优异的电绝缘性能而广泛地用作电气绝缘材料。但聚合物材料易燃的缺点促使人们不断地对其进行阻燃性的研究,这种研究过程从添加卤素阻燃剂到非卤素化阻燃逐步完善。本文在阐述了聚合物材料燃烧特性及机理的基础上,介绍了几种常用的无卤阻燃剂的阻燃机理,并对氢氧化铝、氢氧化镁和红磷等应用于聚烯烃复合体系的阻燃性进行了实验研究。结果表明:氢氧化镁的阻燃性优于氢氧化铝,它们达到较好的阻燃效果时的添加量一般为120-150phr。氢氧化镁与红磷复配使用在添加量为90phr时,氧指数为40,阻燃性能十分优秀。材料具有良好的阻燃性能。但与此同时材料的机械性能、电性能及加工性能等都将受到一定程度的破坏。经过选用偶联剂及进行辐射交联改性, 材料的机械性能令人满意。交联度及电气性能的实验。最终得到符合九五科技攻关项目“辐射交联低烟无卤阻燃电线电缆的研究”的预期目标。
Resumo:
High melt strength polypropylene (HMSPP) was synthesized by in situ heat induction reaction, in which pure polypropylene (PP) powders without any additives were used as a basic resin and vinyl trimethoxysilane (VTMS) as a grafting and crosslinking agent. The grafting reaction of VTMS with PP was confirmed by FTIR. The structure and properties of HMSPP were characterized by means of various measurements. The content of grafted silane played a key role on the melt strength and melt flow rate (MFR) of HMSPP. With increasing the content of grafted silane, the melt strength of HMSPP increased, and the MFR reduced. In addition, due to the existence of cross-linking structure, the thermal stability and tensile strength of HMSPP were improved compared with PP.
Resumo:
Spherical Ru(bpy)(3)(2+)-doped silica (RuSi) nanoparticles were prepared via a water-in-oil microemulsion approach. The electrochemical and electrochemiluminescent properties of the RuSi nanoparticles immobilized on an indium tin oxide (ITO) electrode were investigated. Further, electrochemiluminescence (ECL) of the RuSi nanoparticles with covalently coated biomacromolecules was studied. By covalent cross-linking with glutaraldehyde, gamma-(aminopropyl) triethoxysilane (APTES)-pretreated RuSi nanoparticles were coupled with different concentrations of bovine serum albumin (BSA), hemoglobin, and myoglobin, respectively.
Resumo:
Autofluorescent single polyelectrolyte microcapsules, exemplified by poly-L-lysine (PLL), have been prepared through glutaraldehyde-mediated covalent layer-by-layer (LbL) assembly and subsequent core removal. CaCO3 microparticles were used as template cores for the LbL deposition and removed by treatment of ethylenediamine tetraacetic acid disodium salt (EDTA). The prepared microcapsules, without conjugating an exterior fluorochrome, exhibited evenly distributed fluorescence.
Resumo:
Polycarbodiimide (CDI) was used to improve the thermal stability of poly(L-lactic acid) (PLA) during processing. The properties of PLA containing various amounts of CDI were characterized by GPC, DSC, rheology, and tensile tests. The results showed that an addition of CDI in an amount of 0.1-0.7 wt% with respect to PLA led to stabilization of PLA at even 210 degrees C for up to 30 min, as evidenced by much smaller changes in molecular weight. melt viscosity, and tensile strength and elongation compared to the blank PLA samples. In order to examine the possible stabilization mechanism, CDI was reacted with water, acetic acid, L-lactic acid, ethanol and low molecular weight PLA. The molecular structures of the reaction products were measured with FTIR.
Resumo:
Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.