907 resultados para PESTICIDE
Resumo:
Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.
Resumo:
Resumo:
Pesticide residues in food and environment pose serious health risks to human beings. Plant protection laws, among other things, regulate misuse of agricultural pesticides. Compliance with such laws consequently reduces risks of pesticide residues in food and the environment. Studies were conducted to assess the compliance with plant protection laws among tomato farmers in Mvomero District, Morogoro Region, Tanzania. Compliance was assessed by examining pesticide use practices that are regulated by the Tanzanian Plant Protection Act (PPA) of 1997. A total of 91 tomato farmers were interviewed using a structured questionnaire. Purposive sampling was used in selecting at least 30 respondent farmers from each of the three villages of Msufini, Mlali and Doma in Mvomero District, Morogoro Region. Simple Random Sampling was used to obtain respondents from the sampling frame. Individual and social factors were examined on how they could affect pesticide use practices regulated by the law. Descriptive statistics, mainly frequency, were used to analyze the data while associations between variables were determined using Chi-Square and logistic regression model. The results showed that respondents were generally aware of the existence of laws on agriculture, environment and consumer health, although none of them could name a specific Act. The results revealed further that 94.5% of the farmers read instructions on the pesticides label. However, only 21% used the correct doses of pesticides, 40.7% stored pesticides in special stores, 68.1% used protective gear, while 94.5% always read instructions on the label before using a pesticide product. Training influenced the application rate of pesticide (p < 0.001) while awareness of agricultural laws significantly influenced farmers’ tendency to read information on the labels (p < 0.001). The results showed further that education significantly influenced the use of protective gears by farmers (p = 0.042). Education also significantly affected the manner in which farmers stored pesticide-applying equipment (p = 0.024). Furthermore, farmers’ awareness of environmental laws significantly (p = 0.03) affected farmers’ disposal of empty pesticide containers. Results of this study suggest the need for express provisions on safe use and handling of pesticides and related offences in the Act, and that compliance should be achieved through education rather than coercion. Results also suggest establishment of pesticide disposal mechanisms and structures to reduce unsafe disposal of pesticide containers. It is recommended that farmers should be educated and trained on proper use of pesticides. Farmers’ awareness on laws affecting food, environment and agriculture should be improved.
Resumo:
This work objective was to estimate the bioconcentration factor (BCF) of thirty six pesticides used in the Brazilian integrated apple production systems (IAP), in order to select priority pesticides to be monitored in apples. A hypothetical apple orchard was assumed and the model applied was according to Paraíba (2007) [Pesticide bioconcentration modeling for fruit trees. Chemosphere (66:1468-1475)]. The model relates BCF with plant and pesticide characteristics. The octanol-water partition coefficients of pesticides and their degradation rates in the soil were used. The following plant variables were considered: growth rate, total dry biomass, daily water transpiration rate, and total volume of water necessary to produce one kg of fresh fruit per plant. The pesticide stem-water partition coefficient and the transpiration stream concentration factor were calculated using equations that relate each coefficient with the octanol-water partition coefficient. The pesticide BCF in fruits is an important indicator of the pesticide affinity to fruits, and helps to improve the integrated production systems.
Resumo:
The model presented allows simulating the pesticide concentration in fruit trees and estimating the pesticide bioconcentration factor in fruits of woody species. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (KWood,w), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (kEGS). The modeling started and was developed from a previous model ?Fruit Tree Model? (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.
Resumo:
Homeowners, landowners, pesticide applicators, and farmers are concerned about pesticide drift. It may injure a homeowner’s garden or flowers or ruin a neighboring farmer’s crop. While no Maryland court has considered the issue of liability from pesticide drift, courts in other states have. These decisions provide some guidance on how a Maryland court might handle the issue. Depending on the facts of the drift case, pesticide applicators and farmers could owe damages for nuisance or trespass case, or for uses inconsistent with the pesticide label.
Resumo:
On the one hand, pesticides may be absorbed into the body orally, dermally, ocularly and by inhalation and the human exposure may be dietary, recreational and/or occupational where toxicity could be acute or chronic. On the other hand, the environmental fate and toxicity of the pesticide is contingent on the physico-chemical characteristics of pesticide, the soil composition and adsorption. Human toxicity is also dependent on the exposure time and individual’s susceptibility. Therefore, this work will focus on the development of an Artificial Intelligence based diagnosis support system to assess the pesticide toxicological risk to humanoid, built under a formal framework based on Logic Programming to knowledge representation and reasoning, complemented with an approach to computing grounded on Artificial Neural Networks. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting.
Resumo:
Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.
Resumo:
The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.
Resumo:
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.
Resumo:
Our understanding of how the environment can impact human health has evolved and expanded over the centuries, with concern and interest dating back to ancient times. For example, over 4000 years ago, a civilisation in northern India tried to protect the health of its citizens by constructing and positioning buildings according to strict building laws, by having bathrooms and drains, and by having paved streets with a sewerage system (Rosen 1993). In more recent times, the ‘industrial revolution’ played a dominant role in shaping the modern world, and with it the modern public health system. This era was signified by rapid progress in technology, the growth of transportation and the expansion of the market economy, which lead to the organisation of industry into a factory system. This meant that labour had to be brought to the factories and by the 1820s, poverty and social distress (including overcrowding and infrequent sewage and garbage disposal) was more widespread than ever. These circumstances, therefore, lead to the rise of the ‘sanitary revolution’ and the birth of modern public health (Rosen 1993). The sanitary revolution has also been described as constituting the beginning of the first wave of environmental concern, which continued until after World War 2 when major advances in engineering and chemistry substantially changed the face of industry, particularly the chemical sector. The second wave of environmental concern came in the mid to late 20th century and was dominated by the environmental or ecology movement. A landmark in this era was the 1962 publication of the book Silent Spring by Rachel Carson. This identified for the first time the dramatic effects on the ecosystem of the widespread use of the organochlorine pesticide, DDT. The third wave of environmental concern commenced in the 1980s and continues today. The accelerated rate of economic development, the substantial increase in the world population and the globalisation of trade have dramatically changed the production methods and demand for goods in both developed and developing countries. This has lead to the rise of ‘sustainable development’ as a key driver in environmental planning and economic development (Yassi et al 2001). The protection of health has, therefore, been a hallmark of human history and is the cornerstone of public health practice. This chapter introduces environmental health and how it is managed in Australia, including a discussion of the key generic management tools. A number of significant environmental health issues and how they are specifically managed are then discussed, and the chapter concludes by discussing sustainable development and its links with environmental health.
Resumo:
It is now well known that pesticide spraying by farmers has an adverse impact on their health. This is especially so in developing countries where pesticide spraying is undertaken manually. The estimated health costs are large. Studies to date have examined farmers’ exposure to pesticides, the costs of ill-health and their determinants based on information provided by farmers. Hence, some doubt has been cast on the reliability of such studies. In this study, we rectify this situation by conducting surveys among two groups of farmers. Farmers who perceive that their ill-health is due to exposure to pesticides and obtained treatment and farmers whose ill-health have been diagnosed by doctors and who have been treated in hospital for exposure to pesticides. In the paper, cost comparisons between the two groups of farmers are made. Furthermore, regression analysis of the determinants of health costs show that the quantity of pesticides used per acre per month, frequency of pesticide use and number of pesticides used per hour per day are the most important determinants of medical costs for both samples. The results have important policy implications.
Resumo:
Modelling droplet movement on leaf surfaces is an important component in understanding how water, pesticide or nutrient is absorbed through the leaf surface. A simple mathematical model is proposed in this paper for generating a realistic, or natural looking trajectory of a water droplet traversing a virtual leaf surface. The virtual surface is comprised of a triangular mesh structure over which a hybrid Clough-Tocher seamed element interpolant is constructed from real-life scattered data captured by a laser scanner. The motion of the droplet is assumed to be affected by gravitational, frictional and surface resistance forces and the innovation of our approach is the use of thin-film theory to develop a stopping criterion for the droplet as it moves on the surface. The droplet model is verified and calibrated using experimental measurement; the results are promising and appear to capture reality quite well.