984 resultados para Organic technology
Resumo:
This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.
Resumo:
Nickel-containing catalysts are developed to oligomerize light olefins. Two nickel-containing zincosilicates (Ni-CIT-6 and Ni-Zn-MCM-41) and two nickel-containing aluminosilicates (Ni-HiAl-BEA and Ni-USY) are synthesized as catalysts to oligomerize propylene into C3n (C6 and C9) products. All catalysts oligomerize propylene, with the zincosilicates demonstrating higher average selectivities to C3n products, likely due to the reduced acidity of the Zn heteroatom.
To test whether light alkanes can be incorporated into this oligomerization reaction, a supported homogeneous catalyst is combined with Ni-containing zincosilicates. The homogeneous catalyst is included to provide dehydrogenation/hydrogenation functions. When this tandem catalyst system is evaluated using a propylene/n-butane feed, no significant integration of alkanes are observed.
Ni-containing zincosilicates are reacted with 1-butene and an equimolar propylene/1-butene mixture to study other olefinic feeds. Further, other divalent metal cations such as Mn2+, Co2+, Cu2+, and Zn2+ are exchanged onto CIT-6 samples to investigate stability and potential use for other reactions. Co-CIT-6 oligomerizes propylene, albeit less effectively than Ni-CIT-6. The other M-CIT-6 samples, while not able to oligomerize light olefins, may be useful for other reactions, such as deNOx.
Molecular sieves are synthesized, characterized, and used to catalyze the methanol-to-olefins (MTO) reaction. The Al concentration in SSZ-13 samples is varied to investigate the effect of Al number on MTO reactivity when compared to a SAPO-34 sample with only isolated Si Brønsted acid sites. These SSZ-13 samples display reduced transient selectivity behavior and extended reaction lifetimes as Si/Al increases; attributable to fewer paired Al sites. MTO reactivity for the higher Si/Al SSZ-13s resembles the SAPO-34 sample, suggesting that both catalysts owe their stable reaction behavior to isolated Brønsted acid sites.
Zeolites CHA and RHO are prepared without the use of organic structure-directing agents (OSDAs), dealuminated by steam treatments (500°C-800°C), and evaluated as catalysts for the MTO reaction. The effects of temperature and steam partial pressure during steaming are investigated. X-ray diffraction (XRD) and Ar physisorption show that steaming causes partial structural collapse of the zeolite, with degradation increasing with steaming temperature. 27Al MAS NMR spectra of steamed materials reveal the presence of tetrahedral, pentacoordinate, and hexacoordinate aluminum.
Proton forms of as-synthesized CHA (Si/Al=2.4) and RHO (Si/Al=2.8) rapidly deactivate under MTO testing conditions (400°C, atmospheric pressure). CHA samples steamed at 600°C performed best among samples tested, showing increased olefin selectivities and catalyst lifetime. Acid washing these steamed samples further improved activity. Reaction results for RHO were similar to CHA, with the RHO sample steamed at 800°C producing the highest light olefin selectivities. Catalyst lifetime and C2-C3 olefin selectivities increase with increasing reaction temperature for both CHA-type and RHO-type steamed samples.
Resumo:
Dissertação de Mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2014
Resumo:
Summary There is concern about the health problems caused by pesticides in humans, which has led some grape producers to adopt organic procedures in their vineyards, and a certain amount of these grapes are directed to winemaking. Despite the approval awarded to this organic grape production by the certified organizations, there has been a demand to carry out a survey to determine the physicochemical composition of the wine derived from these products. Some of these wines were made from a single grape variety and others from more than one. For this survey, the samples consisted of five bottles of each type of wine, acquired from wineries and supermarkets in the Serra Gaúcha region, RS, Brazil. The analyses were carried out by physicochemical methods: volatile compounds by gas chromatography; minerals and trace elements by inductively coupled plasma optical emission spectrometry; and pesticide residues by liquid chromatography-mass spectrometry. The results showed that in general the physicochemical composition of these wines was within the limits established by Brazilian legislation. The mineral and trace element concentrations were very low and pesticide residues were not detected (MRL = 10 μg.kg?1) in any of the wines. Resumo: Há preocupação em relação a problemas causados por pesticidas no ser humano, o que levou uma parcela de viticultores a adotar procedimentos de agricultura orgânica em seus vinhedos. Assim, devido a essa preocupação, eles estão produzindo uva pelo sistema orgânico, sendo que uma parte dessa produção é direcionada à elaboração de vinho. Apesar de essas uvas terem sido aprovadas por entidades certificadoras, houve demanda para a realização de um levantamento para determinar a composição dos vinhos delas derivados. Portanto, cinco garrafas de cada tipo de vinho foram coletadas em vinícolas e supermercados da Serra Gaúcha, Rio Grande do Sul, sendo uma parte de vinhos varietais e outra, de cortes de diferentes variedades. As análises foram feitas por métodos físico-químicos: compostos voláteis, por cromatografia gasosa; minerais e elementos-traço, por espectrometria de emissão ótica com plasma acoplado indutivamente, e resíduos de pesticidas, por cromatografia líquida-espectrometria de massa. Os resultados mostram que a composição físico-química desses vinhos e dos minerais situou-se, em geral, dentro dos limites da legislação brasileira. As concentrações de minerais e de elementos-traço foram muito baixas, e não foram detectados resíduos de pesticidas (LMR = 10 μg.kg?1) em nenhum vinho.
Resumo:
Laboratory chamber experiments are used to investigate formation of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions. Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds (VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed (quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several modeling studies are presented that address the effect of vapor wall deposition on SOA formation in chambers.
A coupled vapor-particle dynamics model is used to examine the competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer to the particle phase. The relative time scales of these rates control the amount of SOA formed by affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of changing the vapor-particle mass transfer rate is only observed when SOA formation is kinetically limited. For systems with kinetically limited SOA formation, increasing the rate of vapor-particle mass transfer by increasing the concentration of seed particles is an effective way to minimize the effect of vapor wall deposition.
This coupled vapor-particle dynamics model is then applied to α-pinene ozonolysis SOA experiments. Experiments show that the SOA yield is affected when changing the oxidation rate but not when changing the rate of gas-particle mass transfer by changing the concentration of seed particles. Model simulations show that the absence of an effect of changing the seed particle concentration is consistent with SOA formation being governed by quasi-equilibrium growth, in which gas-particle equilibrium is established much faster than the rate of change of the gas-phase concentration. The observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase oxidation products are produced more quickly and condense preferentially onto seed particles before being lost to the walls. Therefore, for α-pinene ozonolysis, increasing the oxidation rate is the most effective way to mitigate the influence of vapor wall deposition.
Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to simulate α-pinene photooxidation SOA experiments. Unexpectedly, α-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the vapor-particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simulations and experiments. If vapor wall loss in the Caltech chamber is of order 10-5 s-1, GECKO-A greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation products. However, if instead vapor wall loss in the Caltech chamber is of order 10-3 s-1, GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxidation pathways in the α-pinene mechanism.
Resumo:
To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultrymanure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.
Resumo:
2012
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.
Resumo:
Due to the low cost, lightness and flexibility, Polymer Solar Cell (PSC) technology is considered one of the most promising energy technologies. In the past decades, PSCs using fullerenes or fullerene derivatives as the electron acceptors have made great progress with best power conversion efficiency (PCE) reaching 11%. However, fullerene type electron acceptors have several drawbacks such as complicated synthesis, a low light absorption coefficient and poor tuning in energy levels, which prevent the further development of fullerene-based PSCs. Hence the need to have a new class of electron acceptors as an alternative to conventional fullerene compounds. Non-fullerene acceptors (NFAs) have developed rapidly in the last years and the maximum PCEs have exceeded 14% for single-junction cells and 17% for double-junction tandem cells. By combining an electron-donating backbone, generally with several fused rings with electron-withdrawing units, we can simply construct NFA of the acceptor–donor–acceptor type (A–D–A). Versatile molecular structures have been developed using methods such as acceptor motif engineering and donor motif engineering. However, there are only a few electron-donating backbones that have been proved to be successful. Therefore, it is still necessary to develop promising building blocks to further enrich the structural diversity. An indacenodithiophene (IDT) unit with just five fused rings has a sufficiently rigid coplanar structure, which has been regarded as one of the promising electron-rich units to design high-performance A–D–A NFAs. In this work, performed at the King Abdullah University of Science and Technology in Saudi Arabia, a new nine-cyclic building block (TBIDT) with a two benzothiophene unit was synthesized and used for designing new non-fullerene electron acceptors.
Resumo:
The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.
Resumo:
The technology of Organic Light-Emitting Diodes has reached such a high level of reliability that it can be used in various applications. The required light emission efficiency can be achieved by transforming the triplet excitons into singlet states through Reverse InterSystem Crossing (RISC), which is the main process of a general mechanism called thermally activated delayed fluorescence (TADF). In this thesis, we theoretically analyzed two carbazole-benzonitrile (donor-acceptor) derivatives, 2,5-di(9H-carbazol-9-yl)benzonitrile (p-2CzBN) and 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN), and addressed the problem of how donor-acceptor (D-A) or donor-acceptor-donor (D-A-D) flexible molecular architectures influence the nature of the excited states and the emission intensity. Furthermore, we analyzed the RISC rates as a function of the conformation of the carbazole lateral groups, considering the first electronic states, S0, S1, T1 and T2, involved in TADF process. The two prototype molecules, p-2CzBN and 5CzBN, have a similar energy gap between the first singlet and triplet states (∆EST, a key parameter in the RISC rate), but different TADF performances. Therefore, other parameters must be considered to explain their different behavior. The oscillator strength of p-2CzBN, never tested as emitter in OLEDs, is similar to that of 5CzBN, which is an active TADF molecule. We also note that the presence of a second T2 triplet state, lower in energy than S1 only in 5CzBN, and the reorganization energies, associated with RISC processes involving T1 and T2, are important factors in differentiating the rates in p-2CzBN and 5CzBN. For p-2CzBN, the RISC rate from T2 to S1 is surprisingly higher than that from T1 to S1, in disagreement with El-Sayed rules, due to a large reorganization energy associated to the T1 to S1, process; while the contrary occurs for 5CzBN. These insights are important for designing new TADF emitters based on the benzo-carbazole architecture.