962 resultados para Optimal network configuration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protecting a network against link failures is a major challenge faced by network operators. The protection scheme has to address two important objectives - fast recovery and minimizing the amount of backup resources needed. Every protection algorithm is a tradeoff between these two objectives. In this paper, we study the problem of segment protection. In particular, we investigate what is the optimal segment size that obtains the best tradeoff between the time taken for recovery and minimizing the bandwidth used by the backup segments. We focus on the uniform fixed-length segment protection method, where each primary path is divided into fixed-length segments, with the exception of the last segment in the path. We observe that the optimal segment size for a given network depends on several factors such as the topology and the ratio of the costs involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an urgent need for expanding the number of brain banks serving psychiatric research. We describe here the Psychiatric Disorders arm of the Brain Bank of the Brazilian Aging Brain Study Group (Psy-BBBABSG), which is focused in bipolar disorder (BD) and obsessive compulsive disorder (OCD). Our protocol was designed to minimize limitations faced by previous initiatives, and to enable design-based neurostereological analyses. The Psy-BBBABSG first milestone is the collection of 10 brains each of BD and OCD patients, and matched controls. The brains are sourced from a population-based autopsy service. The clinical and psychiatric assessments were done by an expert team including psychiatrists, through an informant. One hemisphere was perfused-fixed to render an optimal fixation for conducting neurostereological studies. The other hemisphere was comprehensively dissected and frozen for molecular studies. In 20 months, we collected 36 brains. A final report was completed for 14 cases: 3 BDs, 4 major depressive disorders, 1 substance use disorder, 1 mood disorder NOS, 3 obsessive compulsive spectrum symptoms, 1 OCD and 1 schizophrenia. The majority were male (64%), and the average age at death was 67.2 +/- 9.0 years. The average postmortem interval was 16 h. Three matched controls were collected. The pilot stage confirmed that the protocols are well fitted to reach our goals. Our unique autopsy source makes possible to collect a fairly number of high quality cases in a short time. Such a collection offers an additional to the international research community to advance the understanding on neuropsychiatric diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work clarifies the relationship between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e. g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-Processor SoC (MPSOC) design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. Scaling down of process technologies has increased process and dynamic variations as well as transistor wearout. Because of this, delay variations increase and impact the performance of the MPSoCs. The interconnect architecture inMPSoCs becomes a single point of failure as it connects all other components of the system together. A faulty processing element may be shut down entirely, but the interconnect architecture must be able to tolerate partial failure and variations and operate with performance, power or latency overhead. This dissertation focuses on techniques at different levels of abstraction to face with the reliability and variability issues in on-chip interconnection networks. By showing the test results of a GALS NoC testchip this dissertation motivates the need for techniques to detect and work around manufacturing faults and process variations in MPSoCs’ interconnection infrastructure. As a physical design technique, we propose the bundle routing framework as an effective way to route the Network on Chips’ global links. For architecture-level design, two cases are addressed: (I) Intra-cluster communication where we propose a low-latency interconnect with variability robustness (ii) Inter-cluster communication where an online functional testing with a reliable NoC configuration are proposed. We also propose dualVdd as an orthogonal way of compensating variability at the post-fabrication stage. This is an alternative strategy with respect to the design techniques, since it enforces the compensation at post silicon stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management Control System (MCS) research is undergoing turbulent times. For a long time related to cybernetic instruments of management accounting only, MCS are increasingly seen as complex systems comprising not only formal accounting-driven instruments, but also informal mechanisms of control based on organizational culture. But not only have the means of MCS changed; researchers increasingly ap-ply MCS to organizational goals other than strategy implementation.rnrnTaking the question of "How do I design a well-performing MCS?" as a starting point, this dissertation aims at providing a comprehensive and integrated overview of the "current-state" of MCS research. Opting for a definition of MCS, broad in terms of means (all formal as well as informal MCS instruments), but focused in terms of objectives (behavioral control only), the dissertation contributes to MCS theory by, a) developing an integrated (contingency) model of MCS, describing its contingencies, as well as its subcomponents, b) refining the equifinality model of Gresov/Drazin (1997), c) synthesizing research findings from contingency and configuration research concerning MCS, taking into account case studies on research topics such as ambi-dexterity, equifinality and time as a contingency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il presente lavoro di tesi si inserisce nell’ambito della classificazione di dati ad alta dimensionalità, sviluppando un algoritmo basato sul metodo della Discriminant Analysis. Esso classifica i campioni attraverso le variabili prese a coppie formando un network a partire da quelle che hanno una performance sufficientemente elevata. Successivamente, l’algoritmo si avvale di proprietà topologiche dei network (in particolare la ricerca di subnetwork e misure di centralità di singoli nodi) per ottenere varie signature (sottoinsiemi delle variabili iniziali) con performance ottimali di classificazione e caratterizzate da una bassa dimensionalità (dell’ordine di 101, inferiore di almeno un fattore 103 rispetto alle variabili di partenza nei problemi trattati). Per fare ciò, l’algoritmo comprende una parte di definizione del network e un’altra di selezione e riduzione della signature, calcolando ad ogni passaggio la nuova capacità di classificazione operando test di cross-validazione (k-fold o leave- one-out). Considerato l’alto numero di variabili coinvolte nei problemi trattati – dell’ordine di 104 – l’algoritmo è stato necessariamente implementato su High-Performance Computer, con lo sviluppo in parallelo delle parti più onerose del codice C++, nella fattispecie il calcolo vero e proprio del di- scriminante e il sorting finale dei risultati. L’applicazione qui studiata è a dati high-throughput in ambito genetico, riguardanti l’espressione genica a livello cellulare, settore in cui i database frequentemente sono costituiti da un numero elevato di variabili (104 −105) a fronte di un basso numero di campioni (101 −102). In campo medico-clinico, la determinazione di signature a bassa dimensionalità per la discriminazione e classificazione di campioni (e.g. sano/malato, responder/not-responder, ecc.) è un problema di fondamentale importanza, ad esempio per la messa a punto di strategie terapeutiche personalizzate per specifici sottogruppi di pazienti attraverso la realizzazione di kit diagnostici per l’analisi di profili di espressione applicabili su larga scala. L’analisi effettuata in questa tesi su vari tipi di dati reali mostra che il metodo proposto, anche in confronto ad altri metodi esistenti basati o me- no sull’approccio a network, fornisce performance ottime, tenendo conto del fatto che il metodo produce signature con elevate performance di classifica- zione e contemporaneamente mantenendo molto ridotto il numero di variabili utilizzate per questo scopo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Telephone Conference Network, sponsored by The Pennsylvania State University's Coordinating Council for Health Care, is designed as a cost-effective format for providing inservice training in geriatric mental health for individuals who serve the elderly. Institutions which subscribe to the Telephone Conference Network are equipped with a conference speaker and telephone hook-up providing a two-way line of communication, and may choose from a variety of inservice programs. Mailed evaluations were completed by participants (N=73) in the "Skills to Manage Moods" program, a series of four 1-hour sessions designed to teach participants the skills needed to help patients cope with depression and to deliver the program to others. The majority of respondents reported high levels of satisfaction with the Telephone Conference Network system and the specific program in which they participated. Although 85 percent reported that they would be able to use the skills learned in the program on the job, 50 percent reported that they would not be interested in teaching these skills to others. The convenience and efficiency of the Telephone Conference Network were the most frequently mentioned strengths of the system, while the physical facilities and the program delivery format adopted by the individual institutions were the most frequently mentioned weaknesses. These data suggested several recommendations for Network subscribers and for professionals offering telephone conference programs, including ensuring optimal class enrollment and adequate physical facilities, and participant involvement in program implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.