968 resultados para Operating cash flows
Resumo:
A two stage Gifford-McMahon cycle cryorefrigerator operating at 20 K is described. This refrigerator uses a very simple ‘spool valve’ and a modified indigenous compressor to compress helium gas. This cryorefrigerator reaches a lowest temperature of 15.5 K; it takes ≈ 50 min to reach 20 K and the cooling capacity is ≈ 2.5 W at 25 K. The cool-down characteristics and load characteristics are presented in graphical form. The effect of changing the operating pressure ratio and the second stage regenerator matrix size are also reported. Pressure-volume (P-V) diagrams obtained at various temperatures indicate that P-V losses form the major fraction of the total losses and this becomes more pronounced as the temperature is decreased. A heat balance analysis shows the relative magnitudes of various losses.
Resumo:
The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.
Resumo:
To capture shear localization in the flow of dense granular materials in a continuum description, it has earlier been proposed that granular materials be treated as Cosserat, or micropolar, continua. Here, we provide experimental verification of the kinematic Cosserat effect, or the deviation of the particle spin from the material spin induced by the velocity gradient. Contrary to earlier belief, we find this effect to be sizable even outside the shear layers. Remarkably, the particles and material elements spin in opposite directions in flow through a hopper.
Resumo:
Existing process mining techniques provide summary views of the overall process performance over a period of time, allowing analysts to identify bottlenecks and associated performance issues. However, these tools are not de- signed to help analysts understand how bottlenecks form and dissolve over time nor how the formation and dissolution of bottlenecks – and associated fluctua- tions in demand and capacity – affect the overall process performance. This paper presents an approach to analyze the evolution of process performance via a notion of Staged Process Flow (SPF). An SPF abstracts a business process as a series of queues corresponding to stages. The paper defines a number of stage character- istics and visualizations that collectively allow process performance evolution to be analyzed from multiple perspectives. The approach has been implemented in the ProM process mining framework. The paper demonstrates the advantages of the SPF approach over state-of-the-art process performance mining tools using two real-life event logs publicly available.
Instabilities induced by variation of Brunt-Vaisala frequency in compressible stratified shear flows
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
Resumo:
Performance measures for monitoring and comparing the reproductive performance of northern Australian beef herds.
Resumo:
Linking the populations of barramundi and king threadfin to environmental flows in four rivers of tropical Australia
Resumo:
All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.
Resumo:
Work with consultants to help graziers understand implications of carbon in their pastures.
Resumo:
Social audit is one of those important mechanisms for strengthening NGOs’ accountability to poor communities (as NGOs’ key beneficiaries). However, conducting social audits within the NGO sector often rests on the individual interests and priorities of donors or NGOs themselves, effectively resulting in self-selection bias, and limiting the effectiveness and usefulness of social audits as a control and evaluation mechanism. The purpose of this chapter is to identify the prevalence, scale, and scope of social audits within the NGO sector, particularly NGOs engaging in microenterprise development programs. Accordingly, this study examined 20 NGOs operating in two countries - Bangladesh and Indonesia. Data were collected from publicly available sources and in-depth interviews with senior executives of the participating NGOs. Further, 10 interviews were conducted with a small sample of beneficiaries (individuals or groups from four of the participating NGOs) in order to gain an understanding of beneficiaries’ perceptions of the NGOs’ social audit mechanism. The findings reveal a range of approaches to social audit among NGOs, as well as the usefulness and limitations of this mechanism for strengthening NGO accountability, particularly to beneficiaries. Findings highlight that within the NGOs investigated the conduct of social audits remained voluntary and was strongly dependant on donors’ requirements. As social audit regulation within the NGO sector is minimal, the findings provide regulators with valuable guidance for better understanding the value of social audit as a mechanism to strengthen accountability of the NGO sector, particularly accountability to beneficiaries.
Resumo:
A new class of exact solutions of plane gasdynamic equations is found which describes piston-driven shocks into non-uniform media. The governing equations of these flows are taken in the coordinate system used earlier by Ustinov, and their similarity form is determined by the method of infinitesimal transformations. The solutions give shocks with velocities which either decay or grown in a finite or infinite time depending on the density distribution in the ambient medium, although their strength remains constant. The results of the present study are related to earlier investigations describing the propagation of shocks of constant strength into non-uniform media.
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.