966 resultados para OXIDATIVE METABOLISM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was designed to determine whether glucocorticoids alter autoregulation of glucose production and fructose metabolism. Two protocols with either dexamethasone (DEX) or placebo (Placebo) were performed in six healthy men during hourly ingestion of[13C]fructose (1.33 mmol.kg-1.h-1) for 3 h. In both protocols, endogenous glucose production (EGP) increased by 8 (Placebo) and 7% (DEX) after fructose, whereas gluconeogenesis from fructose represented 82 (Placebo) and 72% (DEX) of EGP. Fructose oxidation measured from breath 13CO2 was similar in both protocols [9.3 +/- 0.7 (Placebo) and 9.6 +/- 0.5 mumol.kg-1.min-1 (DEX)]. Nonoxidative carbohydrate disposal, calculated as fructose administration rate minus net carbohydrate oxidation rate after fructose ingestion measured by indirect calorimetry, was also similar in both protocols [5.8 +/- 0.8 (Placebo) and 5.9 +/- 2.0 mumol.kg-1.min-1 (DEX)]. We concluded that dexamethasone 1) does not alter the autoregulatory process that prevents a fructose-induced increase in gluconeogenesis from increasing total glucose production and 2) does not affect oxidative and nonoxidative pathways of fructose. This indicates that the insulin-regulated enzymes involved in these pathways are not affected in a major way by dexamethasone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malnutrition affects 40-50% of patients with ear, nose and throat (ENT) cancer. The aim of this study was to assess changes induced by a specific nutritional supplement enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes, as compared with a standard nutritional supplement, on markers of inflammation, oxidative stress and metabolic status of ENT cancer patients undergoing radiotherapy (RT). Fourteen days after starting RT, 26 patients were randomly allocated to one of two groups, 13 supplemented with Prosure, an oncologic formula enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes (specific supplement), and 13 supplemented with Standard-Isosource (standard supplement). Patients were evaluated before RT, and 14, 28 and 90 days after starting RT. The results showed that there were no significant differences between the groups, but greater changes were observed in the standard supplement group, such as a decline in body mass index (BMI), reductions in hematocrit, erythrocyte, eosinophil and albumin levels, and a rise in creatinine and urea levels. We concluded that metabolic, inflammatory and oxidative stress parameters were altered during RT, and began to normalize at the end of the study. Patients supplemented with Prosure showed an earlier normalization of these parameters, with more favorable changes in oxidative stress markers and a more balanced evolution, although the difference was not significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Chronic low-grade inflammation and immune activation may persist in HIV patients despite effective antiretroviral therapy (ART). These abnormalities are associated with increased oxidative stress (OS). Bilirubin (BR) may have a beneficial role in counteracting OS. Atazanavir (ATV) inhibits UGT1A1, thus increasing unconjugated BR levels, a distinctive feature of this drug. We compared changes in OS markers in HIV patients on ATV/r versus efavirenz (EFV)-based first-line therapies. MATERIALS AND METHODS Cohort of the Spanish Research Network (CoRIS) is a multicentre, open, prospective cohort of HIV-infected patients naïve to ART at entry and linked to a biobank. We identified hepatitis C virus/hepatitis B virus (HCV/HBV) negative patients who started first-line ART with either ATV/r or EFV, had a baseline biobank sample and a follow-up sample after at least nine months of ART while maintaining initial regimen and being virologically suppressed. Lipoprotein-associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO) and Oxidized LDL (OxLDL) were measured in paired samples. Marker values at one year were interpolated from available data. Multiple imputations using chained equations were used to deal with missing values. Change in the OS markers was modelled using multiple linear regressions adjusting for baseline marker values and baseline confounders. Correlations between continuous variables were explored using Pearson's correlation tests. RESULTS 145 patients (97 EFV; 48 ATV/r) were studied. Mean (SD) baseline values for OS markers in EFV and ATV/r groups were: Lp-PLA2 [142.2 (72.8) and 150.1 (92.8) ng/mL], MPO [74.3 (48.2) and 93.9 (64.3) µg/L] and OxLDL [76.3 (52.3) and 82.2 (54.4) µg/L]. After adjustment for baseline variables patients on ATV/r had a significant decrease in Lp-PLA2 (estimated difference -16.3 [CI 95%: -31.4, -1.25; p=0.03]) and a significantly lower increase in OxLDL (estimated difference -21.8 [-38.0, -5.6; p<0.01] relative to those on EFV, whereas no differences in MPO were found. Adjusted changes in BR were significantly higher for the ATV/r group (estimated difference 1.33 [1.03, 1.52; p<0.01]). Changes in BR and changes in OS markers were significantly correlated. CONCLUSIONS In virologically suppressed patients on stable ART, OS was lower in ATV/r-based regimens compared to EFV. We hypothesize these changes could be in part attributable to increased BR plasma levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for oxidative folding of synthetic polypeptides assembled by stepwise solid phase synthesis is introduced. Folding is obtained in excellent yields by reacting S-tert-butylthiolated polypeptides with a 100-fold molar excess of cysteine at 37 degrees C in a slightly alkaline buffer containing chaotropic salts, and in the presence of air-oxygen. This novel protocol has been applied to the folding of S-tert-butylthiolated human thymus and activation-regulated chemokine (hu-TARC) derivatives as well as to larger segments of Plasmodium falciparum and Plasmodium berghei circumsporozoite proteins. Folded P. falciparum polypeptides have been used as substrates of endoproteinase Glu-C (Glu-C) and endoproteinase Asp-N (Asp-N) in an attempt to identify their disulfide connectivities. Particular practical advantages of the present method are (i) easy purification and storage of the S-protected peptide derivatives, (ii) elimination of the risk of cysteine alkylation during the acidolytic cleavage deprotection and resin cleavage steps, (iii) possibility to precisely evaluate the extent of folding and disulfide bond formation by mass spectrometry, and (iv) facile recovery of the final folded product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Acute exposure to high altitude stimulates free radical formation in lowlanders, yet whether this persists during chronic exposure in healthy, well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress (as determined by the presence of the biomarkers ascorbate radical [A •- ], via electron paramagnetic resonance spectroscopy, and nitrite [NO 2 2 ], via ozone-based chemiluminescence) was assessed in venous blood of 25 male highlanders in Bolivia living at 3,600 m with CMS (n 5 13, CMS 1 ) and without CMS (n 5 12, CMS 2 ). Twelve age- and activity-matched, healthy, male lowlanders were examined at sea level and during acute hypoxia. We also measured fl ow-mediated dilatation (FMD), arterial stiffness defined by augmentation index normalized for a heart rate of 75 beats/min (AIx-75), and carotid intima-media thickness (IMT). RESULTS: Compared with normoxic lowlanders, oxidative-nitrosative stress was moderately increased in the CMS 2 group ( P , .05), as indicated by elevated A •- (3,191 457 arbitrary units [AU] vs 2,640 445 AU) and lower NO 2 2 (206 55 nM vs 420 128 nM), whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS 1 group (A •- , 3,765 429 AU; NO 2 2 , 148 50 nM) compared with both the CMS 2 group and lowlanders ( P , .05). This was associated with systemic vascular dysfunction as indicated by lower ( P , .05 vs CMS 2 ) FMD (4.2% 0.7% vs 7.6% 1.7%) and increased AIx-75 (23% 8% vs 12% 7%) and carotid IMT (714 127 m M vs 588 94 m M). CONCLUSIONS: Healthy highlanders display a moderate, sustained elevation in oxidative-nitrosative stress that, unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Reactive oxygen species production increases during aging, whereas protective mechanisms such as heat shock proteins (HSPs) or antioxidant capacity are depressed. Physical activity has been hypothesized to provide protection against oxidative damage during aging, but results remain controversial. This study aimed to investigate the effect of different levels of physical activity during aging on Hsp72 expression and systemic oxidative stress at rest and in response to maximal exercise. METHODS: Plasma antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC), thiobarbituric acid-reactive species (TBARS), advanced oxidized proteins products (AOPP), and Hsp72 expression in leukocytes were measured before and after maximal exercise testing in 32 elderly persons (aged 73.2 years), who were assigned to two different groups depending on their level of physical activity during the past 12 months (OLow = moderate to low level; OHigh = higher level). RESULTS: The OHigh group showed higher aerobic fitness and TEAC (both representing 120% of OLow values) as well as lower oxidative damage (50% of OLow values) and Hsp72 expression. Exercise led to a lower increase in oxidative damage in the OHigh group. Aerobic fitness was positively correlated with TEAC and negatively with lipid peroxidation (TBARS). Hsp72 expression was negatively correlated with TEAC but positively correlated with TBARS levels. CONCLUSIONS: The key finding of this study is that, in people aged 60 to 90 years, long-term high level of physical activity preserved antioxidant capacity and limited oxidative damage accumulation. It also downregulated Hsp72 expression, an adaptation potentially resulting from lower levels of oxidative damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythrocyte concentrates (ECs) are the major labile blood product being transfused worldwide, aiming at curing anemia of diverse origins. In Switzerland, ECs are stored at 4 °C up to 42 days in saline-adenine-glucose-mannitol (SAGM). Such storage induces cellular lesions, altering red blood cells (RBCs) metabolism, protein content and rheological properties. A hot debate exists regarding the impact of the storage lesions, thus the age of ECs on transfusion-related clinical adverse outcomes. Several studies tend to show that poorer outcomes occur in patients receiving older blood products. However, no clear association was demonstrated up to date. While metabolism and early rheological changes are reversible through transfusion of the blood units, oxidized proteins cannot be repaired, and it is likely such irreversible damages would affect the quality of the blood product and the efficiency of the transfusion. In vivo, RBCs are constantly exposed to oxygen fluxes, and are thus well equipped to deal with oxidative challenges. Moreover, functional 20S proteasome complexes allow for recognition and proteolysis of fairly oxidized protein, and some proteins can be eliminated from RBCs by the release of microvesicles. The present PhD thesis is involved in a global research project which goal is to characterize the effect of processing and storage on the quality of ECs. Assessing protein oxidative damages during RBC storage is of major importance to understand the mechanisms of aging of stored RBCs. To this purpose, redox proteomic-based investigations were conducted here. In a first part, cysteine oxidation and protein carbonylation were addressed via 2D-DIGE and derivatization-driven immunodetection approaches, respectively. Then, the oxidized sub- proteomes were characterized through LC-MS/MS identification of proteins in spots of interest (cysteine oxidation) or affinity-purified carbonylated proteins. Gene ontology annotation allowed classifying targets of oxidation according to their molecular functions. In a third part, the P20S activity was evaluated throughout the storage period of ECs, and its susceptibility to highly oxidized environment was investigated. The potential defensive role of microvesiculation was also addressed through the quantification of eliminated carbonylated proteins. We highlighted distinct protein groups differentially affected by cysteine oxidation, either reversibly or irreversibly. In addition, soluble extracts showed a decrease in carbonylation at the beginning of the storage and membrane extracts revealed increasing carbonylation after 4 weeks of storage. Engaged molecular functions revealed that antioxidant (AO) are rather reversibly oxidized at their cysteine residue(s), but are irreversibly oxidized through carbonylation. In the meantime, the 20S proteasome activity is decreased by around 40 % at the end of the storage period. Incubation of fresh RBCs extracts with exogenous oxidized proteins showed a dose-dependent and protein-dependent inhibitory effect. Finally, we proved that the release of microvesicles allows the elimination of increasing quantities of carbonylated proteins. Taken together, these results revealed an oxidative pathway model of RBCs storage, on which further investigation towards improved storage conditions will be based. -- Les concentrés érythrocytaires (CE) sont le produit sanguin le plus délivré au monde, permettant de traiter différentes formes d'anémies. En Suisse, les CE sont stocké à 4 °C pendant 42 jours dans une solution saline d'adénine, glucose et mannitol (SAGM). Une telle conservation induit des lésions de stockage qui altèrent le métabolisme, les protéines et les propriétés rhéologique du globule rouge (GR). Un débat important concerne l'impact du temps de stockage des CE sur les risques de réaction transfusionnelles, certaines études tentant de démontrer que des transfusions de sang vieux réduiraient l'espérance de vie des patients. Cependant, aucune association concrète n'a été prouvée à ce jour. Alors que les modifications du métabolisme et changement précoces des propriétés rhéologiques sont réversibles suite à la transfusion du CE, les protéines oxydées ne peuvent être réparées, et il est probable que de telles lésions affectent la qualité et l'efficacité des produits sanguins. In vivo, les GR sont constamment exposés à l'oxygène, et sont donc bien équipés pour résister aux lésions oxydatives. De plus, les complexes fonctionnels de proteasome 20S reconnaissent et dégradent les protéines modérément oxydées, et certaines protéines peuvent être éliminées par les microparticules. Cette thèse de doctorat est imbriquée dans un projet de recherche global ayant pour objectif la caractérisation des effets de la préparation et du stockage sur la qualité des GR. Evaluer les dommages oxydatifs du GR pendant le stockage est primordial pour comprendre les mécanismes de vieillissement des produits sanguin. Dans ce but, des recherches orientées redoxomique ont été conduites. Dans une première partie, l'oxydation des cystéines et la carbonylation des protéines sont évaluées par électrophorèse bidimensionnelle différentielle et par immunodétection de protéines dérivatisées. Ensuite, les protéines d'intérêt ainsi que les protéines carbonylées, purifiées par affinité, sont identifiées par spectrométrie de masse en tandem. Les protéines cibles de l'oxydation sont classées selon leur fonction moléculaire. Dans une troisième partie, l'activité protéolytique du protéasome 20S est suivie durant la période de stockage. L'impact du stress oxydant sur cette activité a été évalué en utilisant des protéines exogènes oxydées in vitro. Le potentiel rôle défensif de la microvesiculation a également été étudié par la quantification des protéines carbonylées éliminées. Dans ce travail, nous avons observé que différents groupes de protéines sont affectés par l'oxydation réversible ou irréversible de leurs cystéines. De plus, une diminution de la carbonylation en début de stockage dans les extraits solubles et une augmentation de la carbonylation après 4 semaines dans les extraits membranaires ont été montrées. Les fonctions moléculaires engagées par les protéines altérées montrent que les défenses antioxydantes sont oxydées de façon réversible sur leurs résidus cystéines, mais sont également irréversiblement carbonylées. Pendant ce temps, l'activité protéolytique du protéasome 20S décroit de 40 % en fin de stockage. L'incubation d'extraits de GR en début de stockage avec des protéines oxydées exogènes montre un effet inhibiteur « dose-dépendant » et « protéine-dépendant ». Enfin, les microvésicules s'avèrent éliminer des quantités croissantes de protéines carbonylées. La synthèse de ces résultats permet de modéliser une voie oxydative du stockage des GRs, à partir de laquelle de futures recherches seront menées avec pour but l'amélioration des conditions de stockage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional neuroimaging has undergone spectacular developments in recent years. Paradoxically, its neurobiological bases have remained elusive, resulting in an intense debate around the cellular mechanisms taking place upon activation that could contribute to the signals measured. Taking advantage of a modeling approach, we propose here a coherent neurobiological framework that not only explains several in vitro and in vivo observations but also provides a physiological basis to interpret imaging signals. First, based on a model of compartmentalized energy metabolism, we show that complex kinetics of NADH changes observed in vitro can be accounted for by distinct metabolic responses in two cell populations reminiscent of neurons and astrocytes. Second, extended application of the model to an in vivo situation allowed us to reproduce the evolution of intraparenchymal oxygen levels upon activation as measured experimentally without substantially altering the initial parameter values. Finally, applying the same model to functional neuroimaging in humans, we were able to determine that the early negative component of the blood oxygenation level-dependent response recorded with functional MRI, known as the initial dip, critically depends on the oxidative response of neurons, whereas the late aspects of the signal correspond to a combination of responses from cell types with two distinct metabolic profiles that could be neurons and astrocytes. In summary, our results, obtained with such a modeling approach, support the concept that both neuronal and glial metabolic responses form essential components of neuroimaging signals.