378 resultados para Nucleoside Deaminases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic imides have been widely employed in drug design research due to their multiple pharmacological and biological properties. In the present study, two-dimensional quantitative structure-activity relationship (2D QSAR) studies were conducted on a series of potent analgesic cyclic imides using both classical and hologram QSAR (HQSAR) methods, yielding significant statistical models (classical QSAR, q(2) = 0.80; HQSAR, q(2) = 0.84). The models were then used to evaluate an external data test, and the predicted values were in good agreement with the experimental results, indicating their consistency for untested compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomiasis is considered the second most important tropical parasitic disease, with severe socioeconomic consequences for millions of people worldwide. Schistosoma monsoni, one of the causative agents of human schistosomiasis, is unable to synthesize purine nucleotides de novo, which makes the enzymes of the purine salvage pathway important targets for antischistosomal drug development. In the present work, we describe the development of a pharmacophore model for ligands of S. mansoni purine nucleoside phosphorylase (SmPNP) as well as a pharmacophore-based virtual screening approach, which resulted in the identification of three thioxothiazolidinones (1-3) with substantial in vitro inhibitory activity against SmPNP. Synthesis, biochemical evaluation, and structure activity relationship investigations led to the successful development of a small set of thioxothiazolidinone derivatives harboring a novel chemical scaffold as new competitive inhibitors of SmPNP at the low-micromolar range. Seven compounds were identified with IC(50) values below 100 mu M. The most potent inhibitors 7, 10, and 17 with 1050 of 2, 18, and 38 mu M, respectively, could represent new potential lead compounds for further development of the therapy of schistosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3`-Azido-3`-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis. X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O)(2)C=O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C(21)H(24)N(10)O(9), crystallizes in the tetragonal space group P4(1)2(1)2 with a = b = 15.284(1), c = 21.695(1) angstrom, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liponucleosides may assist the anchoring of nucleic acid nitrogen bases into biological membranes for tailored nanobiotechnological applications. To this end precise knowledge about the biophysical and chemical details at the membrane surface is required. In this paper, we used Langmuir monolayers as simplified cell membrane models and studied the insertion of five lipidated nucleosides. These molecules varied in the type of the covalently attached lipid group, the nucleobase, and the number of hydrophobic moieties attached to the nucleoside. All five lipidated nucleosides were found to be surface-active and capable of forming stable monolayers. They could also be incorporated into dipalmitoylphosphatidylcholine (DPPC) monolayers, four of which induced expansion in the surface pressure isotherm and a decrease in the surface compression modulus of DPPC. In contrast, one nucleoside possessing three alkyl chain modifications formed very condensed monolayers and induced film condensation and an increase in the compression modulus for the DPPC monolayer, thus reflecting the importance of the ability of the nucleoside molecules to be arranged in a closely packed manner. The implications of these results lie on the possibility of tuning nucleic acid pairing by modifying structural characteristics of the liponucleosides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O(2) ((1)Delta(g)). Spectroscopic evidence for generation of O(2) ((1)Delta(g)) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D(2)O enhancement of O(2) ((1)Delta(g)) production and the quenching effect of NaN(3). Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O(2) ((1)Delta(g)) derived from the H(2)O(2)/HOCl system and from the thermolysis of the N,N`-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O(2) ((1)Delta(g)) generation was obtained by chemical trapping of O(2) ((1)Delta(g)) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce(4+) ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O(2) ((1)Delta(g)) by the Russell mechanism and point to the involvement of O(2) ((1)Delta(g)) in thymidine hydroperoxide cytotoxicity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5`S)-8,5`-cyclo-2`-deoxyadenosine (S-cdA). Among many DNA lesions. S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5` covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antioxidant potential is generally investigated by assaying the ability of a compound to protect biological systems from free radicals. However, non-radical reactive oxygen species can also be harmful. Singlet molecular oxygen ((1)O(2)) is generated by energy transfer to molecular oxygen. The resulting (1)O(2) is able to oxidize the nucleoside 2`-deoxyguanosine (dGuo), which leads to the formation of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin 2`-deoxyribonucleoside diastereomers (dSp) in an aqueous solution. The main objective of the present study was to verify whether the presence of flavonoids (flavone, apigenin, quercetin, morin and catechin) at different concentrations could protect dGuo from (1)O(2) damage. Of the tested flavonoids, flavone possessed antioxidant activity, as determined by a decrease in the formation of both products. Apigenin, morin, quercetin and catechin all increased the formation of 8-oxodGuo at a concentration of 100 mu M. The quantification of plasmid strand breaks after treatment with formamidopyrimidine-DNA glycosylase showed that flavone protected and quercetin and catechin enhanced DNA oxidation. Our results show that compounds, such as flavonoids, may affect the product distribution of (1)O(2)-mediated oxidation of dGuo, and, in particular, high concentrations of flavonoids with hydroxyl groups in their structure lead to an increase in the formation of the mutagenic lesion 8-oxodGuo. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As plaquetas sangüíneas são fragmentos citoplasmáticos, oriundos da ruptura dos megacariócitos, cuja principal função está relacionada à manutenção da integridade vascular. Os nucleotídeos extracelulares, ATP e ADP, bem como a adenosina, têm sido implicados em um grande número de funções fisiológicas: o ADP é o principal fator recrutador de plaquetas, enquanto que o ATP é um inibidor competitivo da agregação induzida por ADP. A adenosina é uma molécula capaz de induzir vasodilatação e inibir a agregação plaquetária. Desta maneira, a manutenção da sinalização purinérgica normal tem se mostrado importante para o tratamento de doenças cardiovasculares. Os nucleosídeos di e trifosfatos circulantes podem ser hidrolisados por membros de várias famílias de ectonucleotidases de membrana e solúveis, incluindo as ecto-nucleosídeo trifosfato difosfoidrolases (E-NTPDases) e ecto-nucleotídeo pirofosfatase/fosfodiesterases (E-NPPs), que em conjunto com a ecto-5’-nucleotidase, levam à formação de adenosina. Na superfície das plaquetas, ambas enzimas, E-NTPDase e ecto-5’-nucleotidase, estão descritas. O sistema renina-angiotensina é o principal regulador da função renal e cardiovascular, desenvolvendo um papel fundamental na homeostasia da pressão arterial e do balanço eletrolítico. A angiotensina II (ANGII) induz fisiologicamente a ativação das plaquetas, possivelmente devido às suas propriedades vasoconstritoras. Os objetivos deste trabalho foram, portanto: 1) caracterizar cineticamente a enzima E-NPP em plaquetas de ratos, utilizando o substrato marcador p-Nph-5’TMP e 2) esclarecer, mesmo que em parte, os possíveis efeitos da ANGII sobre a hidrólise extracelular de nucleotídeos por plaquetas de ratos. No primeiro capítulo deste trabalho, descrevemos uma atividade enzimática em plaquetas de ratos que compartilha as principais características bioquímicas já descritas para as E-NPPs: pH ótimo alcalino; valores de KM e Vmax calculados de aproximadamente 106.22 ± 17.83 μM e 3.44 ± 0.18 nmol p-nitrophenol/min/mg, respectivamente; e dependência de cátions divalentes. Além disso, o AMP inibiu somente a hidrólise do p-Nph-5’TMP. Por outro lado, a azida de sódio, em altas concentrações, a angiotensina II e o cloreto de gadolínio alteraram apenas as hidrólises de ATP ou ADP ou de ambos. No segundo capítulo, mostramos que a ANGII foi capaz de aumentar as hidrólises de ATP, ADP e AMP em plaquetas em todas as doses testadas (5, 50, 500 e 5000 picomóis). Entretanto, nenhuma alteração foi observada com relação à hidrólise do p-Nph-5'TMP. Em adição, observamos um aumento na hidrólise de AMP e uma diminuição na hidrólise de p-Nph-5'TMP em plaquetas de ratos espontaneamente hipertensos (SHR) quando comparados a ratos Wistar normotensos. De maneira geral, esta dissertação traz a caracterização bioquímica da enzima E-NPP na superfície de plaquetas intactas de ratos como sendo parte de um complexo sistema para a hidrólise de nucleotídeos nestes fragmentos citoplasmáticos, podendo, assim, contribuir para o desenvolvimento de terapias antiplaquetárias e para o tratamento de doenças vasculares. Adicionalmente, apresentamos alguns resultados demonstrando interações entre os sistemas angiotensinérgico e adenosinérgico de plaquetas de ratos, o que poderá contribuir para o entendimento e o tratamento de doenças cardiovasculares como hipertensão e arteriosclerose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TORRES, F ; FILHO, M.S. ; ANTUNES, C. ; KALININE, E. ; ANTONIOLLI, E. ; PORTELA, Luis Valmor ; SOUZA, Diogo Onofre ; TORT, A. B. L. . Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Experimental Neurology , v. 221, p. 296-306, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3 Angstrom resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7 Angstrom resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 Angstrom resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs. (C) 2004 Elsevier B.V. All rights reserved.