996 resultados para Nd YV O4
Resumo:
During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.
Resumo:
During laser welding, the keyhole is generated by the recoil pressure induced by the evaporation processes occurring mainly on the front keyhole wall (KW). In order to characterize the evaporation process, we have measured this recoil pressure by using a plume deflection technique, where the plume generated for static conditions (i. e. with no sample displacement) is deflected by a transverse side gas jet. From the measurement of the plume deflection angle, the recoil pressure can be determined as a function of incident intensity and sample material. From these data one can estimate the pressure generated on the front KW, during laser welding. Therefore, the corresponding dynamic pressure exerted by the vapor plume expansion on the rear KW, in contact with the melt pool, can be also estimated. These pressures appear to be in close agreement with those generated by an additional side jet that has been used in previous experiments, for stabilizing the observed melt pool oscillations or fluctuations.
Resumo:
During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.
Resumo:
The authors report an intriguing resistivity versus magnetic field dependence in polycrystalline composite samples containing a magnetoresistive manganite (ferromagnetic/conducting La0.7 Ca0.3 Mn O3) and a magnetic manganese oxide (ferrimagnetic/insulating Mn3 O4). At 10 K, when the magnetic field is scanned from positive to negative values, the resistance peak occurs at positive magnetic field, instead of zero or negative field as usually observed in polycrystalline manganite samples. The position of the resistance peak agrees well with the cancellation of the internal magnetic field, suggesting that the demagnetization effects are responsible for this behavior. © 2007 American Institute of Physics.
Resumo:
We have demonstrated a compact and an efficient passively Q-switched microchip Nd:YVO4 laser by using a composite semiconductor absorber as well as an output coupler. The composite semiconductor absorber was composed of an LT (low-temperature grown) In0.25Ga0.75As absorber and a pure GaAs absorber. To our knowledge, it was the first demonstration of the special absorber for Q-switching operation of microchip lasers. Laser pulses with durations of 1.1 ns were generated with a 350 mu m thick laser crystal and the repetition rate of the pulses was as high as 4.6 MHz. The average output power was 120 mW at the pump power of 700 mW. Pulse duration can be varied from 1.1 to 15.7 ns by changing the cavity length from 0.45 to 5 mm. Pulses with duration of 1.67 and 2.41 ns were also obtained with a 0.7 mm, thick laser crystal and a 1 mm thick laser crystal, respectively. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.
Resumo:
We demonstrate a low-threshold and efficient diode-pumped passively continuous wave (CW) mode-locked Nd:GdVO4 laser with a reflective semiconductor saturable absorber mirror (SESAM). The threshold for the continuous wave was 0.36 W, and it is the lowest threshold for a continuous wave in a passively mode-locked Nd:GdVO4 laser to our knowledge. The maximum average output power of 1.82 W was obtained at a pump power of 6.65 W with a slope efficiency of about 29%. The CW mode-locked pulse duration was measured to be about 10.5 ps with a 116-MHz repetition rate.
Resumo:
A passively mode-locked all-solid-state YVO4/Nd:YVO4 composite crystal laser was realized with a low temperature (LT) In0.25Ga0.75As semiconductor saturable absorber mirror. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Both the Q-switch and continous-wave mode locking operation were experimentally realized. At a pump power of 4 W, the Q-switched mode locking changed to continuous wave mode locking. An average output power of 4.1 W with 5 ps pulse width was achieved at the pump power of 12 W, corresponding to an optical-optical conversion efficiency of 34.2%.
Resumo:
A diode-pumped Nd:GdVO4 laser mode-locked by a semiconductor saturable absorber and output coupler (SESAOC) is passively stabilized to suppress Q-switched mode-locking. A phase mismatched 131130 second-harmonic generation (SHG) crystal is used for passive stabilization. The continuous wave mode-locking (CWML) threshold is reduced and the pulse width is compressed. The pulse width is 6.5 ps as measured at the repetition rate of 128 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]
Resumo:
The generation of passively Q-switched mode-locking operation with 100% modulation depth has been observed from a diode-pumped Nd GdVO4 laser with a low temperature In0.25Ga0.75As saturable absorber, which was grown by the metal-organic chemical-vapor deposition technique and acted as saturable absorber as well as output coupler. The repetition rate and pulse duration of the mode-locked pulses concentrated in the Q-switch envelop were 455 MHz and 12 ps, respectively. The average output power was 1.8 W and the slope efficiency was 36%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fundamental mode Nd YAG laser is experimentally demonstrated with a stagger pumped laser module and a special resonator. The rod is pumped symmetrically by staggered bar modules. A dynamic fundamental mode is achieved with the special resonator under different pump levels. A maximal continuous wave output of 61 W (M-2 = 1.4) is achieved with a single rod. An average output of 47 W, pulse width of 54 ns, pulse energy of 4.7 mJ and peak power of 87 kW are obtained under the Q-switched operation of 10 kHz.
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We obtained continuous wave mode-locked Nd-GdVO4-KTP laser with a SESAM. This is the first report of CW mode-locked Nd GdVO4-KTP laser with a SESAM to our knowledge. 396mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA
Resumo:
A diode-pumped passively mode-locked YVO4/Nd YVO4 composite crystal green laser with a semiconductor saturable absorber mirror (SESAM) and a intracavity frequency-doubling KTP crystal was realized. The maximum average output power of 2.06 W at 532 nm with a repetition rate of 100 MHz was obtained at a pump power of 15 W, corresponding to optical slop efficiency 17.2%. The 532 nm mode-locked pulse width was estimated to be approximately 18-ps.