932 resultados para NANOSCALE FUNCTIONAL MATERIALS
Resumo:
The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.
Resumo:
Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2-6 represents the number of thiophene rings), end-capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field-effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. ne crystallographic structures of NaT2, NaT3, TNT2, and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P2(1)/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P-1(-) and P2(1)2(1)2(1), respectively. All oligomers adopt the well-known herringbone packing-mode in crystals with packing parameters dependent on the structure of the end-capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X-ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028-0.39 cm(2) V-1 s(-1) versus 0.010-0.055 cm(2) V-1 s(-1), respectively).
Resumo:
The relationship between the performance characteristics of organic field-effect transistors (OFETs) with 2,5-bis(4-biphenylyl)-bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n-channel, ambipolar, and p-channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the hetero-junction effect, which also leads to an evolution of the field-effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field-effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.
Resumo:
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).
Resumo:
A series of orange-red to red phosphorescent heteroleptic Cu-I complexes (the first ligand: 2,2 '-biquinoline (bq), 4,4 '-diphenyl2,2 '-biquinoline (dpbq) or 3,3 '-methylen-4,4 '-diphenyl-2,2 '-biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2-(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline-type ligands, complexes [Cu(mdpbq)(PPh3)(2)](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), phosphorescent organic light-emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/ TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A(-1) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear Cu complexes with red emission.
Resumo:
A simple method to disperse carbon nanotubes (CNTs) has been achieved, which gives two photofunctionalized CNTs, hydrazine nanotubes (h-CNTs) and 1,3,4-oxadiazole nanotubes (o-CNTs). Results from FTIR, H-1 NMR spectroscopy and TEM observations showed that the functionalization was successful. The modified nanombes can dissolve in most of the nonpolar organic solvents and no precipitate was observed in the solution of the nanombes even after 2 months. The functionalized nanotubes showed photo-electronic properties, which is due to the attachment of the function groups to them as proved by steady-state fluorescence spectroscopy. Both h-CNTs and o-CNTs showed good thermal stability below 300 C and might be used as functional materials.
Resumo:
Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.
Resumo:
Green-emitting iridium dendrimers with rigid hole-transporting carbazole dendrons are designed, synthesized, and investigated. With second-generation dendrons, the photoluminescence quantum yield of the dendrimers is up to 87% in solution and 45% in a film. High-quality films of the dendrimers are fabricated by spin-coating, producing highly efficient. non-doped electrophosphorescent organic light-ernitting diodes (OLEDs). With a device structure of indium tin oxide/poly(3,4-ethylenedioxythiopheiie):poly(styrene sulfonic acid)/neat dendrimer/1,3,5-tris(2-N-phenylbenzimidazolyl)benzene/LiF/Al, a maximum external quantum efficiency (EQE) of 10.3% and a maximum luminous efficiency of 34.7 cd A(-1) are realized. By doping the dendrimers into a carbazole-based host, the maximum EQE can be further increased to 16.6%. The integration of rigid hole-transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution-processable dendrimers for OLED applications.
Resumo:
New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.
Resumo:
Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).
Resumo:
The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.
Resumo:
The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.
Resumo:
Group IV materials such as silicon nanocrystals (Si NCs) and carbon quantum dots (CQDs) have received great attention as new functional materials with unique physical/chemical properties that are not found in the bulk material. This thesis reports the synthesis and characterisation of both types of nanocrystal and their application as fluorescence probes for the detection of metal ions. In chapter 2, a simple method is described for the size controlled synthesis of Si NCs within inverse micelles having well defined core diameters ranging from 2 to 6 nm using inert atmospheric synthetic methods. In addition, ligands with different molecular structures were utilised to reduce inter-nanocrystal attraction forces and improve the stability of the NC dispersions in water and a variety of organic solvents. Regulation of the Si NCs size is achieved by variation of the surfactants and addition rates, resulting high quality NCs with standard deviations (σ = Δd/d) of less than 10 %. Large scale production of highly mondisperse Si NC was also successfully demonstrated. In chapter 3, a simple solution phase synthesis of size monodisperse carbon quantum dots (CQDs) using a room temperature microemulsion strategy is demonstrated. The CQDs are synthesized in reverse micelles via the reduction of carbon tetrachloride using a hydride reducing agent. CQDs may be functionalised with covalently attached alkyl or amine monolayers, rendering the CQDs dispersible in wide range of polar or non-polar solvents. Regulation of the CQDs size was achieved by utilizing hydride reducing agents of different strengths. The CQDs possess a high photoluminescence quantum yield in the visible region and exhibit excellent photostability. In chapter 4, a simple and rapid assay for detection of Fe3+ ions was developed, based on quenching of the strong blue-green Si NC photoluminescence. The detection method showed a high selectivity, with only Fe3+ resulting in strong quenching of the fluorescence signal. No quenching of the fluorescence signal was induced by Fe2+ ions, allowing for solution phase discrimination between the same ion in different charge states. The optimised sensor system showed a sensitive detection range from 25- 900 μM and a limit of detection of 20.8 μM