545 resultados para N-alkanes
Resumo:
A avaliação de alimentos é um dos principais pontos a serem observados no setor de nutrição animal, a qual diz respeito à utilização de métodos para descrever alimentos ao seu público e à sua capacidade de sustentar diferentes tipos e níveis de desempenho animal. Atualmente, as pesquisas têm buscado relacionar o conteúdo de nutrientes dos alimentos com seu aproveitamento digestivo e metabólico. A nutrição animal é uma ciência bastante dinâmica, sempre lança mão de novas tecnologias e estratégias para melhorar o aproveitamento dos alimentos e busca novas metodologias para respondem às demandas emergenciais.. Dessa forma, o estabelecimento de estratégias apropriadas para obtenção de respostas é essencial para que o sucesso na pesquisa seja atingido. Assim, esta revisão irá abordar e discutir as principais técnicas utilizadas na avaliação de alimentos aplicadas à nutrição de ruminantes.
Resumo:
The formation of paraffin deposits is common in the petroleum industry during production, transport and treatment stages. It happens due to modifications in the thermodynamic variables that alter the solubility of alkanes fractions present in petroleum. The deposition of paraffin can provoke significant and growing petroleum losses, arriving to block the flow, hindering to the production. This process is associated with the phases equilibrium L-S and the stages and nucleation, growth and agglomeration the crystals. That process is function of petroleum intrinsic characteristics and temperature and pressure variations, during production. Several preventive and corrective methods are used to control the paraffin crystallization, such as: use of chemical inhibitors, hot solvents injection, use of termochemistry reactions, and mechanical removal. But for offshore exploration this expensive problem needs more investigation. Many studies have been carried through Wax Appearance Temperature (WAT) of paraffin; therefore the formed crystals are responsible for the modification of the reologics properties of the oil, causing a lot off operational problems. From the determination of the WAT of a system it is possible to affirm if oil presents or not trend to the formation of organic deposits, making possible to foresee and to prevent problems of wax crystallization. The solvent n-paraffin has been widely used as fluid of perforation, raising the production costs when it is used in the removal paraffin deposits, needing an operational substitute. This study aims to determine the WAT of paraffin and the interference off additives in its reduction, being developed system paraffin/solvent/surfactant that propitiates the wax solubilization. Crystallization temperatures in varied paraffin concentrations and different solvents were established in the first stage of the experiments. In the second stage, using the methodology of variation of the photoelectric signal had been determined the temperature of crystallization of the systems and evaluated the interferences of additives to reduction of the WAT. The experimental results are expressed in function of the variations of the photoelectric signals during controlled cooling, innovating and validating this new methodology to determine WAT, relatively simple with relation the other applied that involve specific equipments and of high cost. Through the curves you differentiate of the results had been also identified to the critical stages of growth and agglomeration of the crystals that represent to the saturation of the system, indicating difficulties of flow due to the increase of the density
Resumo:
Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Some microorganisms from virgin ecosystems are able to use petroleum it as source of carbon and energy. The knowledge of microbial biodiversity can help to reveal new metabolic systems for utilization alkanes with biotechnological importance. The aim of this study is: i) Accomplish an in silico study of the AlkB protein aimed to understand the probable mechanism involved on selectivity of alkanes in Gram positive and Gram negative bactéria. ii) prospect and analyze the response of the microbial alkanotrophics communities in soil and mangrove sediments of BPP RN and soil of Atlantic forest in the Horto Dois Irmãos Reserve area/PE using the molecular biomarker, gene alkB; with the PCR and PCR-DGGE approach
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chemical analyses of complete larvae of the first to third instar and cuticle, fat body and salivary glands extracts of fourth instar larvae using gas chromatography and gas chromatography-mass spectrometry, were performed upon Pachycondyla villosa. The results revealed that P. villosa larvae do not produce a pheromone, as only fatty acids and n-alkanes were detected. After quantifying the identified compounds, it was determined that the fat body is the main place of storage and/or production of the cuticular hydrocarbons. It was also observed that the absolute quantity of cuticular hydrocarbons increases progressively during larval development. Inferences about the transport behavior of matured larvae to the pupation place and the colony odor are discussed.
Resumo:
Termites have become an important pest of Eucalyptus and Pinus reforestations, sugarcane and other cultures. An alternative for the control of this pest would be the use of attractive traps that take in account the social behavior of these insects. Diverse factors are important for the insects in the localization of the habitat and the choice of the food and specific odors can facilitate this. Studies referring to Heterotermes tenuis (Isoptera: Rhinotermitidae) are scarce. The objective of this work was to analyze the tergal cuticular extract of H. tenuis and determine the selectivity and sensitivity of its antennae to the components of this extract by electroantennography (EAG). The composition of the cuticular extract was determined by GC-MS analysis. The hydrocarbons found were restricted to linear alkanes, being most abundant C24 to C27 that comprises ca. 65% of the total. Olefins were not detected. EAG and behavioral test responses to the cuticular hydrocarbons were greater and significantly different from the control and the high selectivity of the antennae to the extract indicates its potential as chemical messenger. Cuticular hydrocarbons mixture is species-specific and can be used to identify a given taxon without the diagnostic castes, soldiers or imagoes. Difference in the composition appears to relate with the type of habitat of specie.
Resumo:
Byrsonima basiloba A. Juss. species is a native arboreal type from the Brazilian cerrado (tropical American savanna), and the local population uses it to treat diseases, such as diarrhea and gastric ulcer. It belongs to the Malpighiaceae family, and it is commonly known as murici. Considering the popular use of B. basiloba derivatives and the lack of pharmacological potential studies regarding this vegetal species, the mutagenic and antimutagenic effect of methanol (MeOH) and chloroform extracts were evaluated by the Ames test, using strains TA97a, TA98, TA100, and TA102 of Salmonella typhimurium. No mutagenic activity was observed in any of the extracts. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine, sodium azide, mitomycin C, aflatoxin B1, benzo[a]pyrene, and hydrogen peroxide. Both the extracts evaluated showed antimutagenic activity, but the highest value of inhibition level (89%) was obtained with the MeOH extract and strain TA100 in the presence of aflatoxin B1. Phytochemical analysis of the extracts revealed the presence of n-alkanes, lupeol, ursolic and oleanolic acid, (+)-catechin, quercetin-3-O-α-L-arabinopyranoside, gallic acid, methyl gallate, amentoflavone, quercetin, quercetin-3-O-(2″-O-galloyl)-β-D- galactopyranoside, and quercetin-3-O-(2″-O-galloyl)-α-L- arabinopyranoside. © 2008 Mary Ann Liebert, Inc.
Resumo:
single and double marker methods were compared in seven Nellore steers with average body weight 250 kg, and previously canullated in the rumen and duodenum. The animals were fitted with continuous-infusion pump that administered CoEDTA solutions intraruminally. In addition, a capsule containing Cr 2O 3, and other, containing external n-alkanes C 32, C 36 were inserted into the rumen of each steer. Internal markers indigestible neutral-detergent fiber and acid-detergent fiber (iNDF and iADF after 144 h in situ incubation) and internal n-alkanes C 31, C 33, C 35 were components of the diet. Steers were fed with palisade grass (Brachiaria brizantha cv. marandu) in two age of regrowth, 30 and 60 days. The duodenal flow experimental design was a factorial 2×2×12 while omasal experimental design was a factorial 2×2×4. Markers iNDF, CoEDTA and the combination Co+iNDF were efficacious to estimate duodenal dry matter flow whereas iNDF, iADF and the Co+iADF combination were all efficacious to predict omasal dry matter flow. In conclusion, the double marker method for estimation of omasal and duodenal dry matter flow was the most appropriate considering the ruminal fiber digestibility.
Resumo:
The need for renewal and a more efficient use of energy resources has provided an increased interest in studies of methane activation processes in the gas phase by transition metal oxides. In this respect, the present work is an effort to assess , by means of a computational standpoint, the reactivity of NbOm n+ and FeOm n+ (m = 1, 2, n = 0, 1, 2) oxides in the activation process of the methane C-H bond, which corresponds to the first rate limiting step in the process of converting methane to methanol. These oxides are chosen, primarily, because the iron oxides are the most experimentally studied, and iron ions are more abundant in biological mediums. The main motive for choosing niobium oxides is the abundance of natural reserves of this mineral in Brazil (98%), especially in Minas Gerais. Initially, a thorough investigation was conducted, using different theoretical methods, to analyze the structural and electronic properties of the investigated oxides. Based on these results, the most reliable methodology was selected to investigate the activation process of the methane C-H bond by the series of iron and niobium oxides, considering all possible reaction mechanisms known to activate the C-H bond of alkanes. It is worth noting that, up to this moment and to our knowledge, there are no papers, in literature , investigating and comparing all the mechanisms considered in this work. I n general, the main results obtained show different catalytic tendencies and behaviors throughout the series of monoxides and dioxides of iron and niobium. An important and common result found in the two studies is that the increase in the load on the metal center and the addition of oxygen atoms to the metal, clearly favor the initial thermodynamics of the reaction, i.e., favor the approach of the metal center to methane, distorting its electron cloud and, thereby, decreasing its inertia. Comparing the two sets of oxides, we conclude that the iron oxides are the most efficient in activating the methane C-H bond. Among the iron oxides investigated, FeO + showed better kinetic and thermodynamic performance in the reaction with methane, while from the niobium oxides and ions NbO 2+ and NbO2 2+, showed better catalytic efficiency in the activation of the methane C-H bond.
Resumo:
O gênero Mansoa pertence à família Bignoniaceae e inclui onze espécies que ocorrem principalmente nas florestas secas e úmidas do Brasil e da Argentina até o Sudeste do México. Essas espécies na Amazônia brasileira são conhecidas como "cipó-de-alho", em referência ao forte cheiro de alho das folhas quando esmagadas. O "cipó-de-alho" tem vários usos na medicina tradicional e entre eles, os mais citados são para tratamento de gripe, febre, dor e inflamação de artrite e reumatismo. Apesar de todos os usos, ainda tem pequena aplicação como fitoterápico quando comparado ao alho (Allium sativum). Os óleos essenciais de Mansoa spp. contêm polissulfetos de alila que contribuem para o aroma e sabor característicos. A composição química dos extratos orgânicos de Mansoa incluiu alcanos, alcanóis, triterpenóides, flavonóides, derivados do lapachol e o derivado sulfurado aliína. Os usos, composição química, atividades biológicas e aspectos agrícolas de espécies de Mansoa e sua relação com A. sativum são apresentados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)