900 resultados para Multi-modal information processing
Resumo:
Most prominent models of bilingual representation assume a degree of interconnection or shared representation at the conceptual level. However, in the context of linguistic and cultural specificity of human concepts, and given recent findings that reveal a considerable amount of bidirectional conceptual transfer and conceptual change in bilinguals, a particular challenge that bilingual models face is to account for non-equivalence or partial equivalence of L1 and L2 specific concepts in bilingual conceptual store. The aim of the current paper is to provide a state-of-the-art review of the available empirical evidence from the fields of psycholinguistics, cognitive, experimental, and cross-cultural psychology, and discuss how these may inform and develop further traditional and more recent accounts of bilingual conceptual representation. Based on a synthesis of the available evidence against theoretical postulates of existing models, I argue that the most coherent account of bilingual conceptual representation combines three fundamental assumptions. The first one is the distributed, multi-modal nature of representation. The second one concerns cross-linguistic and cross-cultural variation of concepts. The third one makes assumptions about the development of concepts, and the emergent links between those concepts and their linguistic instantiations.
Resumo:
The more information is available, and the more predictable are events, the better forecasts ought to be. In this paper forecasts by bookmakers, prediction markets and tipsters are evaluated for a range of events with varying degrees of predictability and information availability. All three types of forecast represent different structures of information processing and as such would be expected to perform differently. By and large, events that are more predictable, and for which more information is available, do tend to be forecast better.
Resumo:
Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using noninvasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (N30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2- dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue
Resumo:
What this paper adds? What is already known on the subject? Multi-sensory treatment approaches have been shown to impact outcome measures positively, such as accuracy of speech movement patterns and speech intelligibility in adults with motor speech disorders, as well as in children with apraxia of speech, autism and cerebral palsy. However, there has been no empirical study using multi-sensory treatment for children with speech sound disorders (SSDs) who demonstrate motor control issues in the jaw and orofacial structures (e.g. jaw sliding, jaw over extension, inadequate lip rounding/retraction and decreased integration of speech movements). What this paper adds? Findings from this study indicate that, for speech production disorders where both the planning and production of spatiotemporal parameters of movement sequences for speech are disrupted, multi-sensory treatment programmes that integrate auditory, visual and tactile–kinesthetic information improve auditory and visual accuracy of speech production. The training (practised in treatment) and test words (not practised in treatment) both demonstrated positive change in most participants, indicating generalization of target features to untrained words. It is inferred that treatment that focuses on integrating multi-sensory information and normalizing parameters of speech movements is an effective method for treating children with SSDs who demonstrate speech motor control issues.
Resumo:
The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte) has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses) connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena. © MSM 2011.
Resumo:
The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG