991 resultados para Motor nerve conduction velocity
Resumo:
INTRODUCTION: Paroxysmal atrial fibrillation (AF) may be triggered by intermittent atrial tachycardia, and ultimately lead to persistent AF. However, the mechanisms by which intermittent atrial tachycardia promotes sustained AF are not well understood. METHODS AND RESULTS: Eight sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms, and for the delivery of electrophysiological stimulation protocols and intermittent right atrial tachycardia. Right atrial kinetics of activation recovery interval (ARI) as a surrogate for action potential duration, of conduction time and velocity, and of repolarization alternans were analyzed at incremental pacing rates during the remodeling process induced by weeks of intermittent atrial tachycardia until the development of sustained AF. Intermittent atrial tachycardia decreased ARI and blunted its rate adaptation, facilitated atrial capture, and slowed conduction at high rates, and increased susceptibility to pacing-induced AF. In spite of blunted ARI rate adaptation, right atrial repolarization alternans was maintained during remodeling, and further increased in magnitude just before rapid pacing-induced AF. CONCLUSION: This study suggests that weeks of intermittent right atrial tachycardia result in a gradual electrical remodeling favorable for wavebreaks and reentry that may facilitate fibrillation.
Resumo:
AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.
Resumo:
Recently published criteria using clinical (ataxia or asymmetrical distribution at onset or full development, and sensory loss not restricted to the lower limbs) and electrophysiological items (less than two abnormal lower limb motor nerves and at least an abolished SAP or three SAP below 30% of lower limit of normal in the upper limbs) were sensitive and specific for the diagnosis of sensory neuronopathy (SNN) (Camdessanche et al., Brain, 2009). However, these criteria need to be validated on a large multicenter population. For this, a database collecting cases from fifteen Reference Centers for Neuromuscular diseases in France and Switzerland is currently developed. So far, data from 120 patients with clinically pure sensory neuropathy have been collected. Cases were classified independently from the evaluated criteria as SNN (53), non-SNN (46) or suspected SNN (21) according to the expert's diagnosis. Using the criteria, SNN was possible in 83% (44/53), 23.9% (11/46) and 71.4% (15/21) of cases, respectively. In the non-SSN group, half of the patients with a diagnosis of possible SSN had an ataxic form of inflammatory demyelinating neuropathy. In the SNN group, half of those not retained as possible SNN had CANOMAD, paraneoplasia, or B12 deficiency. In a second step, after application of the items necessary to reach the level of probable SNN (no biological or electrophysiological abnormalities excluding SNN; presence of onconeural antibody, cisplatin treatment, Sj ¨ ogren's syndrome or spinal cord MRI high signal in the posterior column), a final diagnosis of possible or probable SNN was obtained in, respectively, 90.6% (48/53), 8.8% (4/45), and 71.4% (15/21) of patients in the three groups. Among the 5 patients with a final non-SNN but initial SNN diagnosis, 3 had motor conduction abnormalities (one with CANOMAD) and among the 4 patients with a final SNN but initial non-SSN diagnosis, one had anti-Hu antibody and one was discussed as a possible ataxic CIDP. These preliminary results confirm the sensitivity and specificity of the proposed criteria for the diagnosis of SNN.
Resumo:
Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and alpha-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse model.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.
Resumo:
We present a model that allows for the derivation of the experimentally accesible observables: spatial steps, mean velocity, stall force, useful power, efficiency and randomness, etc. as a function of the [adenosine triphosphate] concentration and an external load F. The model presents a minimum of adjustable parameters and the theoretical predictions compare well with the available experimental results.
Resumo:
We describe a patient with adult-onset Rasmussen's encephalitis (RE) responsive to vagus nerve stimulation. This previously healthy woman developed RE in the right hemisphere at the age of 27. Despite antiepileptic drug polytherapy, she continued to experience subcontinuous, simple-partial left-sided motor seizures and slowly progressive cognitive impairment. Resective surgery was not considered owing to the preservation of left motor skills. She was implanted with a vagus nerve stimulator at the age of 41; after 6 months she experienced a greater than 50% reduction in seizure frequency, which persisted over 2 years together with improvement of her neurological and cognitive status.
Resumo:
BACKGROUND: Dolichoectasia (elongation, dilatation and tortuosity) of the basilar artery can cause an isolated cranial neuropathy. The trigeminal nerve and facial nerve are most frequently affected. Dysfunction of one of the ocular motor cranial nerves due to basilar artery dolichoectasia is uncommon, and an isolated IVth (trochlear) nerve palsy has not been previously described in the literature. HISTORY AND SIGNS: Two men, ages 70 and 59 years, respectively, presented with vertical diplopia due to a IVth nerve palsy. In one patient, the onset of the IVth nerve palsy was painless and gradual and in the other patient, the onset was acute and associated with periorbital pain. Neuroimaging in both patients revealed pathological tortuosity of the basilar artery around the midbrain and displacement of the artery toward the side of the affected trochlear nerve. THERAPY AND OUTCOME: The patients were observed clinically. One patient had gradual worsening of his palsy for three and one-half years then suffered a stroke. The second patient whose IVth nerve palsy had an acute onset experienced spontaneous resolution of his palsy but later developed dysfunction of other cranial nerves. CONCLUSIONS: Basilar artery dolichoectasia should be considered in the differential diagnosis of an isolated IVth nerve palsy. The clinical course may be variable, and the prognosis is not always benign.
Resumo:
The value of various indexes to characterize the stimulus-response curve of human motor nerves was assessed in 40 healthy subjects recruited from four European centers of investigation (Créteil, Lausanne, Liège, Marseille). Stimulus-response curves were established by stimulating the right median and ulnar motor nerves at the wrist, with stimulus durations of 0.05 and 0.5 ms. The following parameters were studied: the threshold intensity of stimulation to obtain 10% (I 10), 50% (I 50), and 90% (I 90) of the maximal compound muscle action potential, the ratios I 10/I 50, I 90/I 50, (I 90 - I 10)/I 10, (I 90-I 50)/I 50, and (I 50 - I 10)/I 10, and the slopes of the stimulus-response curves with or without normalization to I 50. For each parameter, within-center variability and reproducibility (in a test-retest study) were assessed and between-center comparisons were made. For most of the parameters, the results varied significantly within and between the centers. Within the centers, only the ratios I 10/I 50 and I 90/I 50 were found constant and reproducible. Between the centers, the absolute intensity thresholds (I 10, I 50, I 90) and the ratio I 90/I 50 did not show significant differences at stimulus duration of 0.5 ms, whatever the stimulated nerve. The reduced variability and good reproducibility of the ratios I 10/I 50 and I 90/I 50 open perspectives in neurophysiological practice for the use of these indexes of the stimulus-response curve, a rapid and noninvasive test.
Resumo:
Frontotemporal dementia (FTD) is the second most common degenerative dementia after Alzheimer's disease and its Lewy body variant. Clinical pathology can be subdivided in three main neuropathological subtypes: frontal lobe dementia, Pick's disease and FTD with motor neuron disease (MND), all characterised by distinct histological features. Until recently the presence of ubiquitin-positive intraneuronal inclusions in the dentate gyrus, and the temporal and frontal cortex was usually associated with the MND type. Such inclusions were also observed in a few sporadic cases of FTD without or with parkinsonism (FTDP) in the absence of MND. We present here clinical, neuropathological and immunohistochemical data about a Swiss FTD family with FTDP-like features but without MND. Spongiosis and mild gliosis were observed in the grey matter. No neurofibrillary tangles, Pick bodies, Lewy bodies, senile plaques or prion-positive signals were present. However, ubiquitin-positive intracytoplasmic inclusions were detected in various structures but predominantly in the dentate gyrus. These observations support the existence of a familial form of FTDP with ubiquitin-positive intracytoplasmic inclusions (Swiss FTDP family).
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
Capsule application of Diamidino Yellow (DY) to the cut end of the sciatic nerve immediately followed by capsule application of Fast Blue (FB) resulted in approximate to 95% double-labelled dorsal root ganglion neurones (DRGn) and motoneurones (Mn). Nerve injection of DY followed either immediately or 2 months later by capsule application of FB resulted in approximate to 90% double-labelled DRGn and Mn, indicating that DY and FB label similar populations of DRGn and Mn, and that insignificant DY fading occurred during this period. Inversing the order of application, however, i.e. nerve injection of FB followed immediately by capsule application of DY, resulted in double labelling in only approximate to 10% of the DRGn and Mn. These percentages increased to 70% of the DRGn and 60% of the Mn when the FB injection was followed 1 or 2 months after by the DY application, indicating that DY uptake is blocked by recent administration of FB. The results indicate that DY and FB might be useful for sequential labelling before and after nerve injury as a tool to investigate the accuracy of sensory and motor regeneration.
Resumo:
Peripheral nerve injury is typically associated with long-term disturbances in sensory localization, despite nerve repair and regeneration. Here, we investigate the extent of correct reinnervation by back-labeling neuronal soma with fluorescent tracers applied in the target area before and after sciatic nerve injury and repair in the rat. The subpopulations of sensory or motor neurons that had regenerated their axons to either the tibial branch or the skin of the third hindlimb digit were calculated from the number of cell bodies labeled by the first and/or second tracer. Compared to the normal control side, 81% of the sensory and 66% of the motor tibial nerve cells regenerated their axons back to this nerve, while 22% of the afferent cells from the third digit reinnervated this digit. Corresponding percentages based on quantification of the surviving population on the experimental side showed 91%, 87%, and 56%, respectively. The results show that nerve injury followed by nerve repair by epineurial suture results in a high but variable amount of topographically correct regeneration, and that proportionally more neurons regenerate into the correct proximal nerve branch than into the correct innervation territory in the skin
Resumo:
Tausta: Polyneuropatia (PNP) on ääreishermoston sairaus, joka aiheuttaa laaja-alaisia, yleensä symmetrisiä vaurioita ääreishermostossa. PNP:aan johtavia syitä on satoja. Tavoitteet: Löytää parhaat neurofysiologiset menetelmät uremian, myelooman hoidossa käytettävän talidomidin sekä Fabryn taudin aiheuttaman PNP:n diagnosoimiseksi. Fabryn taudissa tutkin lisäksi ohutsäieneuropatian aiheuttamia neuropatologisia löydöksiä iholta otetusta koepalasta. Tutkimuksissa kartoitettiin lisäksi PNP:n aiheuttamien subjektiivisten oireiden korrelaatio neurofysiologisten ja neuropatologisten löydösten kanssa. Munuaisten vajaatoimintaa sairastavilla potilailla tavoitteena oli tutkia dialyysihoidon tehon vaikutusta autonomisen hermoston toimintaan sekä yhden dialyysikerran vaikutusta neurofysiologisiin löydöksiin. Aineisto ja menetelmät: I: Tutkittiin 21 uremiapotilaan sensoristen ja motoristen hermojen vasteet, värinä- sekä lämpötuntokynnykset ennen ja jälkeen hemodialyysin. Subjektiiviset PNP oireet kartoitettiin PNP oireita kysyvillä kaavakkeella. II:12 talidomidi hoitoa saavaa myeloomapotilasta, tutkimuksen menetelmät olivat samat kuin tutkimuksessa I. III: 12 Fabryn tautia sairastavaa potilasta, edellä mainittujen neurofysiologisten tutkimusten lisäksi potilailta otettiin ihobiopsia säären alueelta. Ihobiopsiasta laskettiin ohuiden hermosyiden määrä koepalan värjäyksen jälkeen. Subjektiiviset PNP oireet kartoitettiin kyselykaavakkeella. Sydämen sykevaihtelu tutkittiin levossa taajuustason analyysillä. IV: 32 uremiapotilaan autonomisen hermoston toimintaa tutkittiin sydämen sykevaihtelun aikatason analysillä, paksujen myelinoituneiden säikeiden toimintaa tutkittiin perifeeristen sensoristen hermojen mittauksilla toistetusti noin 2.9 vuoden aikana. Tulokset: Ureemisen PNP:n diagnostiikassa herkimmät tutkimukset ovat F-aaltojen parametrit alaraajojen motorisista hermoista, värinätuntokynnys alaraajoista sekä suralishermon amplitudi. Positiiviset PNP oireet uremiassa korreloivat värinätunto-kynnyksen sekä sensoristen hermojen neurografialöydösten kanssa. Neurofysiologisten tutkimusten ajankohdalla dialyysiajankohtaan nähden ei ole merkitystä. Talidomidi-PNP on pääasiassa sensorinen, mutta motoriset syyt ovat lievästi vaurioituneet. Talidomidi PNP:ssa subjektiiviset oireet korreloivat huonosti neurofysiologisten löydösten kanssa. Fabryn taudissa naisilla on oletettua enemmän ohutsäieneuropatian aiheuttamia oireita ja löydöksiä. Paksujen säikeiden löydöksiä ei tullut esiin. Ohutsäieneuropatian diagnostiikassa ihobiopsia ja kvantitatiiviset tuntokynnysmittaustestit täydentävät toisiaan. Tehokas dialyysi parantaa autonomisen hermoston toimintaa uremiapotilailla. Päätelmät: Erityyppisten polyneuropatioiden diagnostiikassa pitää etukäteen valita PNP tyypille oikeat tutkimusmenetelmät raskaiden tutkimuspatterien vähentämiseksi sekä diagnostiikan parantamiseksi. PNP:n aiheuttamat oireet ja kliiniset löydökset pitää aina tutkia, mutta yksin ne eivät ole herkkiä PNP:n diagnostiikassa.