618 resultados para Morbus Fabry
Resumo:
The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square microlasers by directly connecting an output waveguide to the resonators. The electrically injected InP/InGaAsP ETR and square resonator microlasers with a 2-mu m-wide output waveguide were fabricated by standard photolithography and inductively coupled plasma etching techniques. Room-temperature continuous-wave (CW) operations were achieved for the ETR microlasers with the side length from 10 to 30 mu m and the square resonator microlasers with the side length of 20 mu m. The output power versus CW injection current and the laser spectra are presented for an ETR microlaser up to 310 K and a square resonator microlaser to 305 K. The lasing spectra with mode wavelength intervals as that of whispering-gallery-type modes and Fabry-Perot modes are observed for two square lasers, which can lase at low temperature and room temperature, respectively.
Resumo:
This paper presents a new concept of frequency coherence in the frequency-time domain to describe the field correlations between two lightwaves with different frequencies. The coherence properties of the modulated beams from lightwave sources with different spectral widths and the modes of Fabry-Wrot (FP) laser are investigated. It is shown that the lightwave and its corresponding sidebands produced by the optical intensity modulation are perfectly coherent. The measured linewidth of the beat signal is narrow and almost identical no matter how wide the spectral width of the beam is. The frequency spacing of the adjacent FP modes is beyond the operation frequency range of the measurement instruments. In our experiment, optical heterodyne technique is used to investigate the frequency coherence of the modes of FP laser by means of the frequency shift induced by the optical intensity modulation. Experiments show that the FP modes are partially coherent and the mode spacing is relatively fixed even when the wavelength changes with ambient temperature, bias current and other factors. Therefore, it is possible to generate stable and narrow-linewidth signals at frequencies corresponding to several mode intervals of the laser.
Resumo:
Mode characteristics are analyzed for electrically injected equilateral-triangle-resonator (ETR) semiconductor microlasers, which are laterally confined by insulating barrier SiO2 and electrode metals Ti-Au. For the ETR without metal layers, the totally confined mode field patterns are derived based on the reflection phase shifts, and the Q-factors are calculated from the far-field emission of the analytical near field distribution, which are agreement very well with the numerical results of the finite-difference time-domain (FDTD) simulation. The polarization dependence reflections for light rays incident on semiconductor-SiO2 -Ti-Au multi-layer structures are accounted in considering the confinement of TE and TM modes in the ETR with the metal layers. The reflectivity will greatly reduce with a Ti layer between SiO2 and Au for light rays with incident angle less than 30 especially for the TE mode, even the thickness of the Ti layer is only 10 nm. If the ETR is laterally confined by SiO2-Au layers without the Ti layer, the Fabry-Perot type modes with an incident angle of zero on one side of the ETR can also have high Q-factor. The FDTD simulation for the ETR confined by metal layers verifies the above analysis based on multi-layer reflections. The output spectra with mode intervals of whispering-gallery modes and Fabry-Perot type modes are observed from different ETR lasers with side length of 10 m, respectively.
Resumo:
The epitaxial growth of AlxGa1-xN film with high Al content by metalorganic chemical vapor deposition (MOCVD) has been accomplished. The resulting Al content was determined to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard's law. The full width at half maximum (FWHM) of the AlGaN (0002) HRXRD rocking curve was about 597 arcsec. Atomic force microscopy (AFM) image showed a relatively rough surface with grain-like islands, mainly coming from the low surface mobility of adsorbed Alspecies. From transmittance measurement, the cut-off wavelength was around 280 nm and Fabry-Perot fringes were clearly visible in the transmission region. Cathodoluminescence (CL) measurement indicated that there existed a uniformity in the growth direction and a non-uniformity in the lateral direction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.
Resumo:
The influence of lateral propagating modes on the threshold current and the spontaneous emission factor in selectively oxidized vertical cavity surface-emitting lasers (VCSELs) is investigated based on the mode behaviors of lateral propagating modes and the rate equation model. The numerical results show that the lateral propagating modes may be trapped in the aperture region for the selectively oxidized VCSEL with two oxide layers, one above and one below the active region. The output characteristics of VCSELs can be affected due to the reabsorption of the quasitrapped lateral propagating modes. A lower threshold current can be expected for a VCSEL with double oxide layers than that with a single oxide layer. The numerical results of rate equations also show that a larger spontaneous emission factor can be obtained by fitting the output-input curves for the VCSEL with double oxide layers. (C) 1999 American Institute of Physics. [S0021-8979(99)07919-0].
Resumo:
本书介绍了纳米半导体材料的定义、性质及其在未来信息技术中的地位的同时,主要介绍了纳米半导体材料制备的方法和共性关键技术,几种常用的纳米半导体材料的评价技术和应变自组装半导体量子点(线)的尺寸、密度分布、形貌、组分及结构特性的实验研究,纳米半导体材料的电子结构、光学和电学性质,基于子带跃迁的量子级联激光器的工作原理、特性和它的发展现状及其应用前景分析,最后重点介绍了纳米半导体器件及应用。本书适合于从事或对纳米半导体科学技术有兴趣的科研工作者、教师、研究生、本科生和工程技术人员阅读,有些章节可作为科普读物。
Resumo:
Directional emission triangle and square InGaAsP/InP lasers have been fabricated by standard photolithography, inductively coupled plasma etching technique combined with wet chemical etching process. In this article, the characteristics of the microcavity lasers are presented. For an equilateral triangle microcavity laser with the side length of 30 mu m, we got the laser spectra fitted very well with the mode wavelength formulate LIP to the 8(th) transverse mode at room temperature. But the laser spectra are usually more complex than the formulae for the lasers, especially for the lasers with a smaller side length. For a square microcavity laser with side length of 20 mu m, we observed the mode competition between the Fabry-Perot (FP) modes and Whispering-Gallery (WG) modes at 200K. The output spectra below the threshold have the mode interval of FP modes with a large mode interval, and the laser spectra agree very well with the WG modes, which have mode interval less than the FP modes. The output spectra are dominated by the FP modes below the threshold, because the FP modes have a higher output coupling efficiency than the WG modes.
Resumo:
We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Resumo:
Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.
Resumo:
The turn-on delay time jitter of four different unbiased gain-switched laser types is determined by measuring the temporal probability distribution of the leading edge of the emitted optical pulse. One single-mode 1.5-mu-m distributed feed-back laser and three multimode Fabry-Perot lasers emitting at 750 nm and 1.3-mu-m are investigated. The jitter is found to decrease for all lasers with increasing injection current. For multimode lasers it decreases from 8 ps excited slightly above threshold down to below 2 ps at three times the threshold current. The jitter of the distributed feedback (DFB) laser is a factor of 3-5 larger than the jitter of the three multimode lasers. A new model to predict the turn-on delay time jitter is presented and explains the experiments quantitatively.
Resumo:
Quantum-dot laser diodes (QD-LDs) with a Fabry-Perot cavity and quantum-dot semiconductor optical amplifiers (QD-SOAs) with 7° tilted cavity were fabricated. The influence of a tilted cavity on optoelectronic active devices was also investigated. For the QD-LD, high performance was observed at room temperature. The threshold current was below 30 mA and the slope efficiency was 0.36 W/A. In contrast, the threshold current of the QD-SOA approached 1000 mA, which indicated that low facet reflectivity was obtained due to the tilted cavity design.A much more inverted carrier population was found in the QD-SOA active region at high operating current, thus offering a large optical gain and preserving the advantages of quantum dots in optical amplification and processing applications. Due to the inhomogeneity and excited state transition of quantum dots, the full width at half maximum of the electroluminescence spectrum of the QD-SOA was 81.6 nm at the injection current of 120 mA, which was ideal for broad bandwidth application in a wavelength division multiplexing system. In addition, there was more than one lasing peak in the lasing spectra of both devices and the separation of these peak positions was 6-8 nm,which is approximately equal to the homogeneous broadening of quantum dots.
Resumo:
采用表面微机械技术制作了一种1310 nm基于InP/空气隙分布布拉格反射镜的微机械可调谐Fabry-Perot光滤波器.该滤波器的通光孔直径约为70 μm,在1.4 V的调谐电压下,调谐范围达到15 nm.并采用光学传输矩阵方法,分析了斜入射对这种可调谐光滤波器透射谱的峰值半高宽的影响.
Resumo:
对一维对称光子晶体中的色散介质采用洛仑兹振子模型,通过考虑色散介质层两侧的边界条件,得到了表征色散介质层的转移矩阵。对线性层及色散δ层均采用传输矩阵的方法,研究了一维含色散介质的光子晶体微腔中的简正耦合模。由于光与色散介质的相互作用,纵腔模将分裂成简正耦合模。通过改变色散介质的相关参数,详细研究了简正耦合模频率的移动、均匀展宽效应和失谐效应。发现两个简正的耦合模的频率间距主要依赖于振子的耦合强度,与约化的振子的HWHM线宽无关。失谐效应则会使其中的一个峰降低,而另一个峰相对拉高,这一现象可以通过Fabry-Perot腔得到很好的解释。