989 resultados para Model View ViewModel
Resumo:
Joern Fischer, David B. Lindermayer, and Ioan Fazey (2004). Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conservation Biology, 18 (5)pp.1245-1253 RAE2008
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.
Resumo:
In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; American Psychiatric Association, 2000). The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs objective information about the trauma and peritraumatic emotions but uses retrospective memory reports that can have substantial biases. Negative events and emotions that do not satisfy the current diagnostic criteria for a trauma can be followed by symptoms that would otherwise qualify for PTSD. Predisposing factors that affect the current memory have large effects on symptoms. The inability-to-recall-an-important-aspect-of-the-trauma symptom does not correlate with other symptoms. Loss or enhancement of the trauma memory affects PTSD symptoms in predictable ways. Special mechanisms that apply only to traumatic memories are not needed, increasing parsimony and the knowledge that can be applied to understanding PTSD.
Resumo:
Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.
Resumo:
The model: groups of Lie-Chevalley type and buildingsThis paper is not the presentation of a completed theory but rather a report on a search progressing as in the natural sciences in order to better understand the relationship between groups and incidence geometry, in some future sought-after theory Τ. The search is based on assumptions and on wishes some of which are time-dependent, variations being forced, in particular, by the search itself.A major historical reference for this subject is, needless to say, Klein's Erlangen Programme. Klein's views were raised to a powerful theory thanks to the geometric interpretation of the simple Lie groups due to Tits (see for instance), particularly his theory of buildings and of groups with a BN-pair (or Tits systems). Let us briefly recall some striking features of this.Let G be a group of Lie-Chevalley type of rank r, denned over GF(q), q = pn, p prime. Let Xr denote the Dynkin diagram of G. To these data corresponds a unique thick building B(G) of rank r over the Coxeter diagram Xr (assuming we forget arrows provided by the Dynkin diagram). It turns out that B(G) can be constructed in a uniform way for all G, from a fixed p-Sylow subgroup U of G, its normalizer NG(U) and the r maximal subgroups of G containing NG(U).
Resumo:
In this paper, a couple mechanical-acoustic system of equations is solved to determine the relationship between emitted sound and damage mechanisims in paper under controlled stress conditions. The simple classical expression describing the frequency of a plucked string to its material properties is used to generate a numberical representation of the microscopic structue of the paper, and the resulting numerical model is then used to simulate the vibration of a range of simple fibre structures when undergoing two distinct types of damange mechanisms: (a)fibre/fibre bond failure, (b) fibre failure. The numercial results are analysed to determine whether there is any detectable systematic difference between the resulting acoustic emissions of the two damage processes. Fourier techniques are then used to compare th computeed results against experimental measurements. Distinct frequency components identifying each type of damage are shown to exist, and in this respect theory and experiments show good correspondece. Hence, it is shown, that althrough the mathematical model represents a grossly-simplified view of the complex structure of the paper, it nevertheless provides a good understanding of the underlying micro-mechanisms characterising its proeperties as a stress-resisting structure. Use of the model and acoompanying software will enable operators to identify approaching failure conditions in the continuous production of paper from emitted sound signals and take preventative action.
Resumo:
In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to re- solving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.
Resumo:
This study presents a fully coupled temperature–displacement finite element modelling of the injection stretch-blow moulding (ISBM) process of polyethylene terephthalate (PET) bottles using ABAQUS with a view to optimising the process conditions. A physically-based material model (Buckley model) was used to predict the mechanical behaviour of PET at temperatures slightly above its glass transition temperature. A model incorporating heat transfer between the stretch rod, the preform and the mould was built using axisymmetric solid elements. Extensive finite element analyses were carried out to predict the deformation, the distribution and history of strain and temperature during ISBM of a 20 g–330 ml bottle, which was made in an in situ test on a Sidel SB06 machine. Comparisons of numerical results with the measurements demonstrate that the model can satisfactorily model the sidewall thickness and material distributions. It is also shown that significant non-linear differentials exist in temperature and strain in both bottle thickness and length directions during the process. This justifies the employment of a volume approach to accurately predict the final mechanical properties of the bottles governed by the orientation and crystallinity which are highly temperature and strain dependent.
Resumo:
A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Cooperatives, as a kind of firms, are considered by many scholars as an remarkable alternative for overcoming the economic crisis started in 2008. Besides, there are other scholars which pointed out the important role that these firms play in the regional economic development. Nevertheless, when one examines the economic literature on cooperatives, it is detected that this kind of firms is mainly studied starting from the point of view of their own characteristics and particularities of participation and solidarity. In this sense, following a different analysis framework, this article proposes a theoretical model in order to explain the behavior of cooperatives based on the entrepreneurship theory with the aim of increasing the knowledge about this kind of firms and, more specifically, their contribution to regional economic development.
Resumo:
Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.
Resumo:
PURPOSE. To describe a new model of posterior capsule opacification (PCO) in rodents METHODS. An extracapsular lens extraction (ECLE), by continuous curvilinear capsulorrhexis and hydrodissection, was performed in 42 consecutive Brown Norway rats. Animals were killed at 0, 6, and 24 hours and 3, 7, and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. RESULTS. In 34 (81%) of the animals the operated eye appeared well healed before death, with a clear cornea and a well-formed anterior chamber. In eight (19%) there was no view of anterior segment structures because of hyphema, fibrin, or corneal opacification. PCO was clinically evident 3 days after ECLE and was present in all animals at 2 weeks. Immediately after ECLE, lens epithelial cells (LECs) were present in the inner surface of the anterior capsule and lens bow. Twenty-four hours after surgery, LECs started to migrate toward the center of the posterior capsule. At 3 days, multilayered LECs, some spindle shaped, were present throughout the lens capsule. Capsular wrinkling was apparent. Lens fibers and Soemmering's ring were observed in all animals 14 days after surgery, indicating some degree of cellular differentiation. Activated macrophages were present in greater numbers at 3 and 14 days after surgery (P <0.05), when proliferation and migration of LECs appeared to be greatest, and lens fiber differentiation was evident, respectively. CONCLUSIONS. In rodents PCO occurs after ECLE and is associated with low-grade inflammation, mostly of mononuclear macrophages. Although no intraocular lens implantation was performed, this model appears to be valuable for studying the sequence of events that leads to PCO after cataract surgery and the extracellular matrix cues that promote lens fiber differentiation.
Resumo:
Generative divergent analysis (GDA) is a creative additive approach to raising insignificant details of experience to significance. A schematic view of the model highlights use of evocative objects as starting point for ‘turning towards’, ‘turning away’ and ‘being-in-relation-to’ as part of an ongoing burgeoning of experience.The model is exemplified by focusing on a wicker settee as an evocative object that was noticed in an early-years reception class. Revisiting the object generated several speculative ideas relating to the hidden curriculum and energies of childhood. Poetry and song were used during the revisiting in order to develop a more direct experience in addition to the more contemplative awareness that was evoked during the first encounters. As an additive process the outcome of GDA takes the form of unfinished resources for thinking.
Resumo:
Cost-effective semantic description and annotation of shared knowledge resources has always been of great importance for digital libraries and large scale information systems in general. With the emergence of the Social Web and Web 2.0 technologies, a more effective semantic description and annotation, e.g., folksonomies, of digital library contents is envisioned to take place in collaborative and personalised environments. However, there is a lack of foundation and mathematical rigour for coping with contextualised management and retrieval of semantic annotations throughout their evolution as well as diversity in users and user communities. In this paper, we propose an ontological foundation for semantic annotations of digital libraries in terms of flexonomies. The proposed theoretical model relies on a high dimensional space with algebraic operators for contextualised access of semantic tags and annotations. The set of the proposed algebraic operators, however, is an adaptation of the set theoretic operators selection, projection, difference, intersection, union in database theory. To this extent, the proposed model is meant to lay the ontological foundation for a Digital Library 2.0 project in terms of geometric spaces rather than logic (description) based formalisms as a more efficient and scalable solution to the semantic annotation problem in large scale.
Resumo:
This paper explores the morphosyntactic features of mixed nominal expressions in a sample of empirical Igbo-English intrasentential codeswitching data (i.e. codeswitching within a bilingual clause) in terms of the Matrix Language Frame (MLF) model. Since both Igbo and English differ in the relative order of head and complement within the nominal argument phrase, the analysed data seem appropriate for testing the veracity of the principal assumption underpinning the MLF model: the notion that the two languages (in our case Igbo and English) participating in codeswitching do not both contribute equally to the morphosyntactic frame of a mixed constituent. As it turns out, the findings provide both empirical and quantitative support for the basic theoretical view that there is a Matrix Language (ML) versus Embedded Language (EL) hierarchy in classic codeswitching as predicted by the MLF model because both Igbo and English do not simultaneously satisfy the roles of the ML in Igbo-English codeswitching.