937 resultados para Metal ceramic alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate ordered array formation of Au nanoparticles by controlled solid-state dewetting of a metal film on stepped alumina substrates. In situ transmission electron microscopy studies reveal that the dewetting process starts with nucleation of ordered dry regions on the substrate. The chemical potential difference between concave and convex surface regions induces anisotropic metal diffusion leading to the formation of nanowires in the valleys. The nanowires fragment due to Rayleigh instability forming arrays of metal nanoparticles on the substrate. The length scale of reconstruction relative to the starting film thickness is an important parameter in controlling the spatial order of the nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NOx, and unburned hydrocarbons-need to be fully converted to CO2, N-2, and H2O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al2O3 or SiO2 promoted by CeO2. However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce1-xMxO2-delta and Ce1-x-yTiyMxO2-delta (M = Pt, Pd, Rh; x = 0,01-0.02, delta approximate to x, y = 0.15-0.25) oxides in fluorite structure, In these oxide catalysts, pt(2+), Pd2+, or Rh3+ ions are substituted only to the extent of 1-2% of Ce4+ ion. Lower-valent noble metal ion substitution in CeO2 creates oxygen vacancies. Reducing molecules (CO, H-2, NH3) are adsorbed onto electron-deficient noble metal ions, while oxidizing (02, NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NOx reduction (with >80% N-2 selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO2 or Ce1-xTixO2 were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO2 lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M-0/Mn+, Ce4+/Ce3+, and Ti4+/Ti3+ redox couples leads to the promoting action of CeO2, activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressure and temperature dependence of the electrical resistivity of amorphous Ga20Te80 alloy is reported for the first time. The alloy undergoes a pressure induced amorphous semiconductor-to-crystalline metal phase transition at 6.5 ± 0.5 GPa. The high pressure crystalline phase is a mixture of Te and GaTe3 phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processing maps developed on the basis of the Dynamic Materials Model provide valuable information that might help the metal working industry in solving problems related to workability and microstructural control in commercial alloys. In this research, the processing maps for an as-cast AZ31 magnesium alloy are presented. The results are validated via microstructural observations, clearly delineating safe and unsafe regimes for further process design of this alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium-calcium fluoride melt was used to remove phosphorus from the ferro-chrome alloy (64.5 wt% Cr, 0.15 wt% P) during electro slag refining process. The effect of atmosphere and deoxidisers, viz. Al, Fe–Mo and misch metal were also studied during dephosphorisation reaction. The thermodynamic properties of Ca–CaF2 melt is calculated from a known phase diagram and these results are discussed in relation with the dephosphorisation reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypo-eutectic Ti-6.5 wt % Si alloy modified by separate additions of misch metal and low surface tension elements (Na, Sr, Se and Bi) has been examined by microscopic study and thermal analysis. Addition of third element led to modification of microstructure with apparently no significant enhancement of tensile ductility, with the exception of bismuth. Bismuth enhanced the ductility of the alloy by a factor of two and elastic-plastic fracture toughness to 9 MPa m–1/2 from a value of almost zero. The improved ductility of bismuth modified alloy is attributed to the reduced interconnectivity of the eutectic suicide, absence of significant suicide precipitation in the eutectic region and increase in the volume fraction of uniformly distributed dendrites. These changes are accompanied by a decrease in the temperature of eutectic solidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen is dissociatively adsorbed on an annealed Ni/TiO2 surface just as on a Ti–Ni alloy surface while it is molecularly adsorbed on a Ni/Al2O3 surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine-particle metal chromites (MCr2O4, where M = Mg, Ca, Mn, Fe, Co, Ni, Cu, and Zn) have been prepared by the combustion of aqueous solutions containing the respective metal nitrate, chromium(III) nitrate, and urea in stoichiometric amounts. The mixtures, when rapidly heated to 350°C, ignite and yield voluminous chromites with surface areas ranging from 5 to 25 m2/g. MgCr2O4, sintered in air at 1500°C for 5 h, has a density of 4.0 g/cm3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to their high strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (alpha+beta) alloys like Ti-6Al-4V is the backbone materials for aerospace, energy, and chemical industries. Trace boron addition (similar to 0.1 wt. %) to the alloy Ti-6Al-4V produces a reduction in as-cast grain size by roughly an order of magnitude resulting in enhanced ductility, higher stiffness, strength and good fracture resistance. Boron addition could also affect the evolution of texture and microstructure in the material. The solidification microstructures of Boron free as well as Boron containing Ti-6Al-4V are found to be almost homogeneous from periphery towards the center of as-cast ingot in terms of both alpha-colony size and distribution. Boron addition substantially reduces alpha-colony size (similar to 50-80 mu m). A gradual change in alpha texture from periphery towards the center has been observed with orientations close to specific texture components suggesting the formation of texture zones. The mechanism of texture evolution can be visualized as a result of variant selection during solidification through (alpha+beta) phase field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Texture evolution in h. c. p. (alpha) phase derived from aging of a differently processed metastable b.c.c. (beta) titanium alloy was investigated. The study was aimed at examining (i) the effect of different b. c. c. cold rolling textures and (ii) the effect of different defect structures on the h. c. p transformation texture. The alloy metastable beta alloy Ti-10V-4.5Fe-1.5Al was rolled at room temperature by unidirectional (UDR) and multi-step cross rolling (MSCR). A piece of the as-rolled materials were subjected to aging in order to derive the h. c. p. (alpha) phase. In the other route, the as-rolled materials were recrystallized and then aged. Textures were measured using X-ray as well as Electron Back Scatter Diffraction. Rolling texture of beta phase, as characterized by the presence of a strong gamma fibre, was found stronger in M S C R compared to UDR, although they were qualitatively similar. The stronger texture of MSCR sample could be attributed to the inhomogeneous deformation taking place in the sample that might contribute to weakening of texture. Upon recrystallization in beta phase field close to beta-transus. the textures qualitatively resembled the corresponding beta deformation textures; however, they got strengthed. The aging of differently beta rolled samples resulted in the product alpha-phase with different textures. The (UDR + Aged) sample had a stronger texture than (MSCR + Aged) sample, which could be due to continuation of defect accumulation in UDR sample, thus providing more potential sites for the nucleation of alpha phase. The trend was reversed in samples recrystallized prior to aging. The (MSCR + Recrystallized + Aged) sample showed stronger texture of alpha phase than the (UDR + Recrystallized + Aged) sample. This could be attributed to extensive defect annihilation in the UDR sample on recrystallization prior to aging. The (MSCR + Aged) sample exhibited more alpha variants when compared to (MSCR + Recrystallized + Aged) sample. This has been attributed to the availability of more potential sites for nucleation of alpha phase in the former. It could be concluded that alpha transformation texture depends mainly on the defect structure of the parent phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.