983 resultados para Mediterranean-scale correlations
Resumo:
A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.
Resumo:
Objectives: The study of aggression and anger in competitive sport relies on accurate and economical measurement via observation, interview and questionnaire. Unfortunately, extant questionnaires have been criticised for having poor validity, are not sport specific, or reflect mood states rather than trait qualities. Therefore, a measure of trait anger and aggressiveness in competitive athletes was developed. Method: A list of statements representing aggressiveness and anger was generated and distributed to competitive athletes from diverse sports. Exploratory and confirmatory analyses were used to verify the theoretically predicted factor structure. Correlations with an extant measure of aggression and anger were used to ascertain concurrent validity. Discriminant validity was tested by comparing males with females, and aggressive with non-aggressive footballers. Results: A 12-item scale (Competitive Aggressiveness and Anger Scale, CAAS) consisting of two subscales was derived using principal component factor analysis with oblimin rotation. Confirmatory factor analysis using structural equation modelling confirmed the overall structure. Test-retest correlation, construct and discriminant validities were good, supporting the utility of the scale as a measure of athlete trait aggressiveness and anger. Conclusions: The CAAS appears to be a useful measure of athletic anger and aggressiveness. Its brevity and ability to discriminate aggressive from non-aggressive athletes should prove useful for future research concerning aggressive behaviour in competitive athletes. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Gilles de la Tourette syndrome (GTS) is a chronic childhood-onset neuropsychiatric disorder with a significant impact on patients' health-related quality of life (HR-QOL). Cavanna et al. (Neurology 2008; 71: 1410-1416) developed and validated the first disease-specific HR-QOL assessment tool for adults with GTS (Gilles de la Tourette Syndrome-Quality of Life Scale, GTS-QOL). This paper presents the translation, adaptation and validation of the GTS-QOL for young Italian patients with GTS. METHODS: A three-stage process involving 75 patients with GTS recruited through three Departments of Child and Adolescent Neuropsychiatry in Italy led to the development of a 27-item instrument (Gilles de la Tourette Syndrome-Quality of Life Scale in children and adolescents, C&A-GTS-QOL) for the assessment of HR-QOL through a clinician-rated interview for 6-12 year-olds and a self-report questionnaire for 13-18 year-olds. RESULTS: The C&A-GTS-QOL demonstrated satisfactory scaling assumptions and acceptability. Internal consistency reliability was high (Cronbach's alpha > 0.7) and validity was supported by interscale correlations (range 0.4-0.7), principal-component factor analysis and correlations with other rating scales and clinical variables. CONCLUSIONS: The present version of the C&A-GTS-QOL is the first disease-specific HR-QOL tool for Italian young patients with GTS, satisfying criteria for acceptability, reliability and validity. © 2013 - IOS Press and the authors. All rights reserved.
Resumo:
Bed expansion occurs during the operation of gas-fluidized beds and is influenced by particle properties, gas properties and distributor characteristics. It has a significant bearing on heat and mass transfer phenomena within the bed. A method of predicting bed expansion behavior from other fluidizing parameters would be a useful tool in the design process, dispensing with the need for small-scale trials. This study builds on previous work on fluidized beds with vertical inserts to produce a correlation that links a modified particle terminal velocity, minimum fluidizing velocity and distributor characteristics with bed voidage in the relationship with P as the pitch between holes in the perforated distributor plate. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Background: Food allergy is often a life-long condition that requires constant vigilance in order to prevent accidental exposure and avoid potentially life-threatening symptoms. Parents’ confidence in managing their child’s food allergy may relate to the poor quality of life anxiety and worry reported by parents of food allergic children. Objective: The aim of the current study was to develop and validate the first scale to measure parental confidence (self-efficacy) in managing food allergy in their child. Methods: The Food Allergy Self-Efficacy Scale for Parents (FASE-P) was developed through interviews with 53 parents, consultation of the literature and experts in the area. The FASE-P was then completed by 434 parents of food allergic children from a general population sample in addition to the General Self-Efficacy Scale (GSES), the Food Allergy Quality of Life Parental Burden Scale (FAQL-PB), the General Health Questionnaire (GHQ12) and the Food Allergy Impact Measure (FAIM). A total of 250 parents completed the re-test of the FASE-P. Results: Factor and reliability analysis resulted in a 21 item scale with 5 sub-scales. The overall scale and sub-scales has good to excellent internal consistency (α’s of 0.63-0.89) and the scale is stable over time. There were low to moderate significant correlations with the GSES, FAIM and GHQ12 and strong correlations with the FAQL-PB, with better parental confidence relating to better general self-efficacy, better quality of life and better mental health in the parent. Poorer self-efficacy was related to egg and milk allergy; self-efficacy was not related to severity of allergy. Conclusions and clinical relevance: The FASE-P is a reliable and valid scale for use with parents from a general population. Its application within clinical settings could aid provision of advice and improve targeted interventions by identifying areas where parents have less confidence in managing their child’s food allergy.
Resumo:
Possible effects of climate change means great challenges to landscape design professionals in Hungary. Our climate will shift towards the Mediterranean and we have to prepare for this with among others, choosing correctly the plants to be planted. Teaching garden design dendrology has not recognized yet the necessity and urgency of this matter. Quick measures are required due to the long life-time and slow development of woody taxons. This paper presents the double relationship between landscape design and climate change emphasizing the outdoor architectural methods of adjustment. Such techniques recognized abroad are presented like precipitation drainage by vegetation and extensive green roof. Finally the effects of climate change on ornamental plants application are presented together with the associated project started at the Corvinus University of Budapest in 2010.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.
Resumo:
Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (epsilon-Nd) values more positive than ~10.5/~ 11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°-4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1-2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5-2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warm waters of a strengthened North Atlantic Current temporarily replacing MOW derivates at Rockall Plateau.
Resumo:
With the aim of analyzing the complex physical and biogeochemical interactions at high temporal and spatial resolution in the complex estuarine waters of Alfacs Bay, a beam attenuation-based approach was used as optical proxy of different biogeochemical variables. Thus, the dataset contains the attenuation proxies as well as laboratory results from the analysis of water samples, which were used to validate our approach. In addition, the major physical forcing in the Bay was also measured.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19C, at 10.5 and 7 ka, to 15C at present. This trend is interrupted by a fall from 18C during the Roman and Medieval Warm Periods to 16C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic- Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.
Resumo:
Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 140 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to <126 ka (AHP5), 116 to 99 ka (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (>2 ka), S4 (3.5 ka) and S3 (5 ka). During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.