976 resultados para Mechanical failure.
Resumo:
OBJECTIVES Valve-sparing root replacement (VSRR) is thought to reduce the rate of thromboembolic and bleeding events compared with aortic root replacement using a mechanical aortic root replacement (MRR) with a composite graft by avoiding oral anticoagulation. But as VSRR carries a certain risk for subsequent reinterventions, decision-making in the individual patient can be challenging. METHODS Of 100 Marfan syndrome (MFS) patients who underwent 169 aortic surgeries and were followed at our institution since 1995, 59 consecutive patients without a history of dissection or prior aortic surgery underwent elective VSRR or MRR and were retrospectively analysed. RESULTS VSRR was performed in 29 (David n = 24, Yacoub n = 5) and MRR in 30 patients. The mean age was 33 ± 15 years. The mean follow-up after VSRR was 6.5 ± 4 years (180 patient-years) compared with 8.8 ± 9 years (274 patient-years) after MRR. Reoperation rates after root remodelling (Yacoub) were significantly higher than after the reimplantation (David) procedure (60 vs 4.2%, P = 0.01). The need for reinterventions after the reimplantation procedure (0.8% per patient-year) was not significantly higher than after MRR (P = 0.44) but follow-up after VSRR was significantly shorter (P = 0.03). There was neither significant morbidity nor mortality associated with root reoperations. There were no neurological events after VSRR compared with four stroke/intracranial bleeding events in the MRR group (log-rank, P = 0.11), translating into an event rate of 1.46% per patient-year following MRR. CONCLUSION The calculated annual failure rate after VSRR using the reimplantation technique was lower than the annual risk for thromboembolic or bleeding events. Since the perioperative risk of reinterventions following VSRR is low, patients might benefit from VSRR even if redo surgery may become necessary during follow-up.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) was founded on 10 December 2009 with the initiative of Roland Hetzer (Deutsches Herzzentrum Berlin, Berlin, Germany) and Jan Gummert (Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany) with 15 other founding international members. It aims to promote scientific research to improve care of end-stage heart failure patients with ventricular assist device or a total artificial heart as long-term mechanical circulatory support. Likewise, the organization aims to provide and maintain a registry of device implantation data and long-term follow-up of patients with mechanical circulatory support. Hence, EUROMACS affiliated itself with Dendrite Clinical Systems Ltd to offer its members a software tool that allows input and analysis of patient clinical data on a daily basis. EUROMACS facilitates further scientific studies by offering research groups access to any available data wherein patients and centres are anonymized. Furthermore, EUROMACS aims to stimulate cooperation with clinical and research institutions and with peer associations involved to further its aims. EUROMACS is the only European-based Registry for Patients with Mechanical Circulatory Support with rapid increase in institutional and individual membership. Because of the expeditious data input, the European Association for Cardiothoracic Surgeons saw the need to optimize the data availability and the significance of the registry to improve care of patients with mechanical circulatory support and its potential contribution to scientific intents; hence, the beginning of their alliance in 2012. This first annual report is designed to provide an overview of EUROMACS' structure, its activities, a first data collection and an insight to its scientific contributions.
Resumo:
From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.
Resumo:
The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.
Resumo:
The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.
Resumo:
The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests
Resumo:
GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests.
Resumo:
Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching
Resumo:
Quasi-monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favourable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost and the full square-shape of the multicrystalline ones. However, the quasi-mono ingot growth can lead to a different defect structure than the typical Cz-Si process. Thus, the properties of the brand-new quasi-mono wafers, from a mechanical point of view, have been for the first time studied, comparing their strength with that of both Cz-Si mono and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three-parameter Weibull distribution. High mechanical strength was found in all the cases. The low quality quasi-mono wafers, interestingly, did not exhibit critical strength values for the PV industry, despite their noticeable density of extended defects.
Resumo:
The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Microstructure characterization and residua! strain scanning, carried out by neutron diffraction, were used to assess the joints features. It was found that the heat source position influences the base metals dilution and the residua! stress field associated to the welding process; the transverse residual stress is smaller than for the longitudinal component, of magnitudes close to the parent CS yield strength. Furthermore, compressive transverse residual stresses were encountered at the SS-weld interface. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being piastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.En este trabajo se exponen los resultados de una investigacion sobre el comportamiento mecanico de soldaduras disimiles acero inoxidable-acero al carbono, realizadas para unir chapas delgadas, desplazando la fuente de calor del eje longitudinal de la union soldada por laser sobre el acero al carbono. Se han determinado las caracteristicas microestructurales de la union soldada, las tensiones residuales generadas (mediante difraccion de neutrones) y las curvas tension-deformacion locales y globales, mediante medidas locales de deformacion empleando el sistema VIC-2D "video image correlation". El desplazamiento de la fuente de calor infiuye en la dilution de los metales base y el campo de tensiones residuales asociado al proceso de soldeo; las tensiones residuales medidas en direction longitudinal se aproximan al limite elastico del acero al carbono, mientras que las tensiones residuales transversales son menores, e incluso de compresion. El ensayo a traccion de la union soldada revela que las tensiones residuales y la diferencia de limite elastico entre los metales base y la soldadura propician que la rotura se produzca por inestabilidad plastica del acero al carbono, lejos de la soldadura, sin que la union plastifique.
Resumo:
Drilling process on wafers to produce EWT or MWT solar cells is a critical fabrication step, which affects on their mechanical stability. The amount of damage introduced during drilling process depends on the density of holes, their size and the chemical process applied afterwards. To quantify the relation between size of the holes and reduction of mechanical strength, several sets of wafers have been prepared, with different hole diameter. The mechanical strength of these sets has been measured by the ring on ring bending test, and the stress state in the moment of failure has been deduced by FE simulation.
Resumo:
The objective of the present study is the estimation of the depth to which the wire sawing process causes damage to the wafer surfaces. Previous analyses were carried out by means of the four line bending test. The characteristic of this test implied that the failure could be due to surface cracks located in the central zone of the wafer or near the edges. In order to evaluate the influence of the edge or surface cracks a new study has been carried out using the ball/ring on ring test. Description and results of the tests are presented. The preliminary analysis of the failure stress using analytical methods confirms the expected results. A Finite Element model developed to get more information of the test results is also presented.
Resumo:
The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.
Resumo:
Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.