937 resultados para Markov chains, uniformization, inexact methods, relaxed matrix-vector
Resumo:
In many applications of lifetime data analysis, it is important to perform inferences about the change-point of the hazard function. The change-point could be a maximum for unimodal hazard functions or a minimum for bathtub forms of hazard functions and is usually of great interest in medical or industrial applications. For lifetime distributions where this change-point of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can also be obtained. Considering the exponentiated Weibull distribution for the lifetime data, we have different forms for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms. This model gives great flexibility of fit, but we do not have analytic expressions for the change-point of the hazard function. In this way, we consider the use of Markov Chain Monte Carlo methods to get posterior summaries for the change-point of the hazard function considering the exponentiated Weibull distribution.
Resumo:
Wir betrachten einen zeitlich inhomogenen Diffusionsprozess, der durch eine stochastische Differentialgleichung gegeben wird, deren Driftterm ein deterministisches T-periodisches Signal beinhaltet, dessen Periodizität bekannt ist. Dieses Signal sei in einem Besovraum enthalten. Wir schätzen es mit Hilfe eines nichtparametrischen Waveletschätzers. Unser Schätzer ist von einem Wavelet-Dichteschätzer mit Thresholding inspiriert, der 1996 in einem klassischen iid-Modell von Donoho, Johnstone, Kerkyacharian und Picard konstruiert wurde. Unter gewissen Ergodizitätsvoraussetzungen an den Prozess können wir nichtparametrische Konvergenzraten angegeben, die bis auf einen logarithmischen Term den Raten im klassischen iid-Fall entsprechen. Diese Raten werden mit Hilfe von Orakel-Ungleichungen gezeigt, die auf Ergebnissen über Markovketten in diskreter Zeit von Clémencon, 2001, beruhen. Außerdem betrachten wir einen technisch einfacheren Spezialfall und zeigen einige Computersimulationen dieses Schätzers.
Resumo:
We introduce the notation of Markov chains and their properties, and give the definition of ergodic, irreducible and aperiodic chains with correspective examples. Then, the definition of hidden Markov models is given and their characteristics are examined. We formulate three basic problems regarding the hidden Markov models and discuss the solution of two of them - the Viterbi algorithm and the forward-backward algorithm.
Resumo:
A multivariate frailty hazard model is developed for joint-modeling of three correlated time-to-event outcomes: (1) local recurrence, (2) distant recurrence, and (3) overall survival. The term frailty is introduced to model population heterogeneity. The dependence is modeled by conditioning on a shared frailty that is included in the three hazard functions. Independent variables can be included in the model as covariates. The Markov chain Monte Carlo methods are used to estimate the posterior distributions of model parameters. The algorithm used in present application is the hybrid Metropolis-Hastings algorithm, which simultaneously updates all parameters with evaluations of gradient of log posterior density. The performance of this approach is examined based on simulation studies using Exponential and Weibull distributions. We apply the proposed methods to a study of patients with soft tissue sarcoma, which motivated this research. Our results indicate that patients with chemotherapy had better overall survival with hazard ratio of 0.242 (95% CI: 0.094 - 0.564) and lower risk of distant recurrence with hazard ratio of 0.636 (95% CI: 0.487 - 0.860), but not significantly better in local recurrence with hazard ratio of 0.799 (95% CI: 0.575 - 1.054). The advantages and limitations of the proposed models, and future research directions are discussed. ^
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Resumo:
La migración española de la segunda mitad del siglo XX se ha caracterizado en un primer momento por su carácter masivo y poco cualificado, seguido por un interregno de procesos de retorno y finalmente por una migración estable, no masiva pero altamente cualificada. La atención prestada a la inmigración masiva que recibe España a finales del siglo XX relegó a un segundo plano esta emigración cualificada de españoles. En este artículo se considera la relación entre movilidad espacial (migración de españoles) y su posible consecuencia sobre la movilidad social ascendente que experimentan. Para ello se utilizan los datos procedentes de la encuesta internacional EIMSS (European Internal Migrations Social Survey) y los procedimientos de escalamiento de clase social basados en la ocupación de Goldthorpe. El análisis se complementa con una simulación sobre la movilidad de clase, con la finalidad de visualizar y comparar los efectos sobre la movilidad social de la emigración de españoles a Francia, Alemania, Italia y Gran Bretaña.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A stochastic metapopulation model accounting for habitat dynamics is presented. This is the stochastic SIS logistic model with the novel aspect that it incorporates varying carrying capacity. We present results of Kurtz and Barbour, that provide deterministic and diffusion approximations for a wide class of stochastic models, in a form that most easily allows their direct application to population models. These results are used to show that a suitably scaled version of the metapopulation model converges, uniformly in probability over finite time intervals, to a deterministic model previously studied in the ecological literature. Additionally, they allow us to establish a bivariate normal approximation to the quasi-stationary distribution of the process. This allows us to consider the effects of habitat dynamics on metapopulation modelling through a comparison with the stochastic SIS logistic model and provides an effective means for modelling metapopulations inhabiting dynamic landscapes.
Resumo:
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
Consider a haploid population and, within its genome, a gene whose presence is vital for the survival of any individual. Each copy of this gene is subject to mutations which destroy its function. Suppose one member of the population somehow acquires a duplicate copy of the gene, where the duplicate is fully linked to the original gene's locus. Preservation is said to occur if eventually the entire population consists of individuals descended from this one which initially carried the duplicate. The system is modelled by a finite state-space Markov process which in turn is approximated by a diffusion process, whence an explicit expression for the probability of preservation is derived. The event of preservation can be compared to the fixation of a selectively neutral gene variant initially present in a single individual, the probability of which is the reciprocal of the population size. For very weak mutation, this and the probability of preservation are equal, while as mutation becomes stronger, the preservation probability tends to double this reciprocal. This is in excellent agreement with simulation studies.
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.
Resumo:
A recently developed spectral method for identifying metastable states in Markov chains is used to analyse the conformational dynamics of a four residue peptide Valine-Proline-Alanine-Leucine. We compare our results to empirically defined conformational states and show that the found metastable states correctly reproduce the conformational dynamics of the system.
Resumo:
The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively.