940 resultados para MCMC, Metropolis Hastings, Gibbs, Bayesian, OBMC, slice sampler, Python
Resumo:
We consider two Cournot firms, one located in the home country and the other in the foreign country, producing substitute goods for consumption in a third country. We suppose that neither the home government nor the foreign firm know the costs of the home firm, while the foreign firm cost is common knowledge. We determine the separating sequential equilibrium outputs.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
The Purpose of this Work Project is to develop a Marketing plan, with a special focus on promotional activities and partnerships’ developments, for the Big Slice, a fast food Pizzeria that is currently operating in Lisbon, where I'm currently working in the marketing and promotion department. The project aims at developing promotions and key partnerships that maximize the opportunity. For that, I have analyzed the major trends in the food sector in Portugal, and I have conducted several qualitative interviews among young individuals. Finally I have developed and implemented various alternative promotions and established important key partnerships.
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
Organotypic hippocampal slice cultures, neurogenesis, posterior periventricle, oxygen-glucose deprivation, microglia, inflammation
Resumo:
La organización de la producción en el espacio se asocia con el crecimiento y el desarrollo económico. En esta investigación se propone el estudio de las relaciones entre Barcelona y los municipios de su sistema urbano desde tres niveles del análisis: el área metropolitana, la región metropolitana policéntrica, y la red de ciudades. El estudio del área metropolitana permite comprobar el cambio de extensión de la metrópolis de Barcelona, la dirección de la expansión y la creciente integración con otras áreas urbanas de Cataluña. El análisis interno del área metropolitana nos permite comprobar que a pesar del gran peso específico del municipio de Barcelona, el sistema urbano es policéntrico. El incremento en extensión de la metrópolis se debe a la expansión conjunta de la interacción con Barcelona y con un conjunto de ciudades de antigua tradición industrial. Las áreas de influencia de todos estos subcentros se entrelazan al expandirse, formado una región metropolitana policéntrica. Finalmente, la aplicación al análisis de las teorías de redes de ciudades permite identificar un sistema urbano en el que coexisten relaciones jerárquicas con no jerárquicas, y en el que se generan relaciones de complementariedad y sinergia. El análisis de las redes de ciudades en clave de economía del conocimiento permite deducir la dependencia en la transmisión de información y conocimiento tanto de las redes verticales como de las horizontales. Posteriores estudios deben encaminarse a cuantificar los efectos de la estructura urbana sobre la productividad y la utilidad.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
This paper uses an infinite hidden Markov model (IIHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.