938 resultados para Lung mechanics
Resumo:
Globally, Indigenous populations, which include Aboriginal and Torres Strait islanders in Australia and Māori people in New Zealand (NZ), have poorer health than their non-Indigenous counterparts (1). Indigenous peoples worldwide face substantial challenges in poverty, education, employment, housing, and disconnection from ancestral lands (1). While addressing social determinants of health is a priority, solving clinical issues is equally important. Indeed, ignoring the latter until social issues improve risks further disparity as this may take generations. A systematic overview of interventions addressing social determinants of health found a striking lack of reliable evaluations (2). Where evidence was available, health improvement associated with interventions was modest or uncertain (2). Thus, advances in healthcare remain essential and these require the best evidence available in preventing and managing common illnesses, including respiratory illnesses
Resumo:
Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (β= −0.0452, p=0.024) as well as COPD (β= −0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07×10−7), FVC (p=2.07×10−5), and FEV1/FVC (p=5.27×10−3). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.
Resumo:
Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.
Resumo:
Background The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. Methods NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. Results Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. Conclusions Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena.
Resumo:
Lung cancer is the leading cause of cancer-related mortality. According to WHO, 1.37 million deaths occur globally each year as a result of this disease. More than 70% of these cases are associated with prior tobacco consumption and/or cigarette smoking, suggesting a direct causal relationship. The development and progression of lung cancer and other malignancies involves the loss of genetic stability, resulting in acquisition of cumulative genetic changes; this affords the cell increased malignant potential. As such, an understanding of the mechanisms through which these events may occur will potentially allow for development of new anticancer therapies. This review will address the association between lung cancer and genetic instability, with a central focus on genetic mutations in the DNA damage repair pathways. In addition, we will discuss the potential clinical exploitation of these pathways, both in terms of biomarker staging, as well as through direct therapeutic targeting.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.
Resumo:
BACKGROUND: Acute respiratory exacerbations (AREs) cause morbidity and lung function decline in children with chronic suppurative lung disease (CSLD) and bronchiectasis. In a prospective longitudinal cohort study, we determined the patterns of AREs and factors related to increased risks for AREs in children with CSLD/bronchiectasis. METHODS: Ninety-three indigenous children aged 0.5 to 8 years with CSLD/bronchiectasis in Australia (n = 57) and Alaska (n = 36) during 2004 to 2009 were followed for > 3 years. Standardized parent interviews, physical examinations, and medical record reviews were undertaken at enrollment and every 3 to 6 months thereafter. RESULTS: Ninety-three children experienced 280 AREs (median = 2, range = 0-11 per child) during the 3-year period; 91 (32%) were associated with pneumonia, and 43 (15%) resulted in hospitalization. Of the 93 children, 69 (74%) experienced more than two AREs over the 3-year period, and 28 (30%) had more than one ARE in each study year. The frequency of AREs declined significantly over each year of follow-up. Factors associated with recurrent (two or more) AREs included age < 3 years, ARE-related hospitalization in the first year of life, and pneumonia or hospitalization for ARE in the year preceding enrollment. Factors associated with hospitalizations for AREs in the first year of study included age < 3 years, female caregiver education, and regular use of bronchodilators. CONCLUSIONS: AREs are common in children with CSLD/bronchiectasis, but with clinical care and time AREs occur less frequently. All children with CSLD/bronchiectasis require comprehensive care; however, treatment strategies may differ for these patients based on their changing risks for AREs during each year of care.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
Children in indigenous populations have substantially higher respiratory morbidity than non-indigenous children. Indigenous children have more frequent respiratory infections that are, more severe and, associated with long-term sequelae. Post-infectious sequelae such as chronic suppurative lung disease and bronchiectasis are especially prevalent among indigenous groups and have lifelong impact on lung function. Also, although estimates of asthma prevalence among indigenous children are similar to non-indigenous groups the morbidity of asthma is higher in indigenous children. To reduce the morbidity of respiratory illness, best-practice medicine is essential in addition to improving socio-economic factors, (eg household crowding), tobacco smoke exposure, and access to health care and illness prevention programs that likely contribute to these issues. Although each indigenous group may have unique health beliefs and interfaces with modern health care, a culturally sensitive and community-based comprehensive care system of preventive and long term care can improve outcomes for all these conditions. This article focuses on common respiratory conditions encountered by indigenous children living in affluent countries where data is available.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
Resumo:
We propose a new scheme for the use of constraints in setting up classical, Hamiltonian, relativistic, interacting particle theories. We show that it possesses both Poincaré invariance and invariance of world lines. We discuss the transition to the physical phase space and the nonrelativistic limit.
Resumo:
It is shown that within the framework of a linear five-level quasi-geostrophic steady state global model the middle latitude systems can always have significant influence on the Asian summer monsoonal system through the lower tropospheric monsoonal westerly window region around 80°E. It is hypothesized that quasistationarity of the middle latitude longwave systems results in stronger teleconnections through this window and the consequent monsoon breaks when the phase is right.
Resumo:
This dissertation proposed a novel experimental model combining a defect configuration with an active instrumented fixation device to investigate the influence of mechanics on bone healing. The proposed defect configuration aimed to minimise physiological loading within an experimental fracture gap and the instrumented fixator was used for the application of controlled displacements and in vivo stiffness monitoring of the healing process. This thesis has provided a novel approach to advance current knowledge and understanding of mechanobiology, which has been limited in previous experimental models.