913 resultados para Load flow with step size optimization
Resumo:
The transmission system is responsible for connecting the power generators to consumers safely and reliably, its constant expansion is necessary to transport increasing amounts of electricity. In order to help the power systems engineers, an optimization tool for optimize the expansion of the transmission system was developed using the modeling method of the linearized load flow and genetic. This tool was designed to simulate the impact of different scenarios on the cost of transmission expansion. The proposed tool was used to simulate the effects of the presence of distributed generation in the expansion of a fictitious transmission system, where it was found a clear downward trend in investment required for the expansion of the transmission system taking account of increasing levels of distributed generation.
Resumo:
Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
Resumo:
The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.
Resumo:
Tropical Storm Lee produced 25-36 cm of rainfall in north-central Pennsylvania on September 4th through 8th of 2011. Loyalsock Creek, Muncy Creek, and Fishing Creek experienced catastrophic flooding resulting in new channel formation, bank erosion, scour of chutes, deposition/reworking of point bars and chute bars, and reactivation of the floodplain. This study was created to investigate aspects of both geomorphology and sedimentology by studying the well-exposed gravel deposits left by the flood, before these features are removed by humans or covered by vegetation. By recording the composition of gravel bars in the study area and creating lithofacies models, it is possible to understand the 2011 flooding. Surficial clasts on gravel bars are imbricated, but the lack of imbrication and high matrix content of sediments at depth suggests that surface imbrication of the largest clasts took place during hyperconcentrated flow (40-70% sediment concentration). The imbricated clasts on the surface are the largest observed within the bars. The lithofacies recorded are atypical for mixed-load stream lithofacies and more similar to glacial outburst flood lithofacies. This paper suggests that the accepted lithofacies model for mixed-load streams with gravel bedload may not always be useful for interpreting depositional systems. A flume study, which attempted to duplicate the stratigraphy recorded in the field, was run in order to better understand hyperconcentrated flows in the study area. Results from the study in the Bucknell Geology Flume Laboratory indicate that surficial imbrication is possible in hyperconcentrated conditions. After flooding the flume to entrain large amounts of sand and gravel, deposition of surficially imbricated gravel with massive or upward coarsening sedimentology occurred. Imbrication was not observed at depth. These experimental flume deposits support our interpretation of the lithofacies discovered in the field. The sizes of surficial gravel bar clasts show clear differences between chute and point bars. On point bars, gravels fine with increasing distance from the channel. Fining also occurs at the downstream end of point bars. In chute deposits, dramatic fining occurs down the axis of the chute, and lateral grain sizes are nearly uniform. Measuring the largest grain size of sandstone clasts at 8-11 kilometer intervals on each river reveals anomalies in the downstream fining trends. Gravel inputs from bedrock outcrops, tributaries, and erosion of Pleistocene outwash terraces may explain observed variations in grain size along streams either incised into the Appalachian Plateau or located near the Wisconsinan glacial boundary. Atomic Mass Spectrometry (AMS) radiocarbon dating of sediment from recently scoured features on Muncy Creek and Loyalsock Creek returned respective ages of 500 BP and 2490 BP. These dates suggest that the recurrence interval of the 2011 flooding may be several hundred to several thousand years. This geomorphic interval of recurrence is much longer then the 120 year interval calculated by the USGS using historical stream gauge records.
Resumo:
OBJECTIVE: Anemia is a common comorbid condition in various inflammatory states and an established predictor of mortality in patients with chronic heart failure, ischemic heart disease, and end-stage renal disease. The present study of patients with abdominal aortic aneurysm (AAA) undergoing endovascular repair (EVAR) assessed the relationships between baseline hemoglobin concentration and AAA size, as well as anemia and long-term survival. METHODS: Between March 1994 and November 2006, 711 patients (65 women, mean age 75.8 +/- 7.8 years) underwent elective EVAR. Anemia was defined as a hemoglobin level <13 g/dL in men and <12 g/dL in women. Post-EVAR mean follow-up was 48.3 +/- 32.0 months. Association of hemoglobin level with AAA size was assessed with multiple linear regression. Mortality was determined with use of the internet-based Social Security Death Index and the electronic hospital record. Kaplan-Meier survival curves of anemic and nonanemic patient groups were compared by the log-rank method. Multivariable logistic regression models were used to determine the influence of anemia on vital status after EVAR. RESULTS: A total of 218/711 (30.7%) of AAA patients undergoing EVAR had anemia at baseline. After adjustment for various risk factors, hemoglobin level was inversely related to maximum AAA diameter (beta: - .144, 95%-CI: -1.482 - .322, P = .002). Post-EVAR survival was 65.5% at 5 years and 44.4% at 10 years. In long-term follow-up, survival was significantly lower in patients with anemia as compared to patients without anemia (P < .0001 by log-rank). Baseline hemoglobin levels were independently related to long-term mortality in multivariable Cox regression analysis adjusted for various risk factors (adjusted HR: 0.866, 95% CI: .783 to .958, P = .005). Within this model, statin use (adjusted HR: .517, 95% CI: .308 to .868, P = .013) was independently related to long-term survival, whereas baseline AAA diameter (adjusted HR: 1.022, 95% CI: 1.009 to 1.036, P = .001) was an independently associated with increased mortality. CONCLUSIONS: Baseline hemoglobin concentration is independently associated with AAA size and reduced long-term survival following EVAR. Thus, the presence or absence of anemia offers a potential refinement of existing risk stratification instruments.
Resumo:
A diesel oxidation catalyst (DOC) with a catalyzed diesel particulate filter (CPF) is an effective exhaust aftertreatment device that reduces particulate emissions from diesel engines, and properly designed DOC-CPF systems provide passive regeneration of the filter by the oxidation of PM via thermal and NO2/temperature-assisted means under various vehicle duty cycles. However, controlling the backpressure on engines caused by the addition of the CPF to the exhaust system requires a good understanding of the filtration and oxidation processes taking place inside the filter as the deposition and oxidation of solid particulate matter (PM) change as functions of loading time. In order to understand the solid PM loading characteristics in the CPF, an experimental and modeling study was conducted using emissions data measured from the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR system and a DOC-CPF system (or a CCRT® - Catalyzed Continuously Regenerating Trap®, as named by Johnson Matthey) in the exhaust system. A series of experiments were conducted to evaluate the performance of the DOC-only, CPF-only and DOC-CPF configurations at two engine speeds (2200 and 1650 rpm) and various loads on the engine ranging from 5 to 100% of maximum torque at both speeds. Pressure drop across the DOC and CPF, mass deposited in the CPF at the end of loading, upstream and downstream gaseous and particulate emissions, and particle size distributions were measured at different times during the experiments to characterize the pressure drop and filtration efficiency of the DOCCPF system as functions of loading time. Pressure drop characteristics measured experimentally across the DOC-CPF system showed a distinct deep-bed filtration region characterized by a non-linear pressure drop rise, followed by a transition region, and then by a cake-filtration region with steadily increasing pressure drop with loading time at engine load cases with CPF inlet temperatures less than 325 °C. At the engine load cases with CPF inlet temperatures greater than 360 °C, the deep-bed filtration region had a steep rise in pressure drop followed by a decrease in pressure drop (due to wall PM oxidation) in the cake filtration region. Filtration efficiencies observed during PM cake filtration were greater than 90% in all engine load cases. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed and/or improved from existing models as part of this research and calibrated using the data obtained from these experiments. The 1-D DOC model employs a three-way catalytic reaction scheme for CO, HC and NO oxidation, and is used to predict CO, HC, NO and NO2 concentrations downstream of the DOC. Calibration results from the 1-D DOC model to experimental data at 2200 and 1650 rpm are presented. The 1-D 2-layer CPF model uses a ‘2-filters in series approach’ for filtration, PM deposition and oxidation in the PM cake and substrate wall via thermal (O2) and NO2/temperature-assisted mechanisms, and production of NO2 as the exhaust gas mixture passes through the CPF catalyst washcoat. Calibration results from the 1-D 2-layer CPF model to experimental data at 2200 rpm are presented. Comparisons of filtration and oxidation behavior of the CPF at sample load-cases in both configurations are also presented. The input parameters and selected results are also compared with a similar research work with an earlier version of the CCRT®, to compare and explain differences in the fundamental behavior of the CCRT® used in these two research studies. An analysis of the results from the calibrated CPF model suggests that pressure drop across the CPF depends mainly on PM loading and oxidation in the substrate wall, and also that the substrate wall initiates PM filtration and helps in forming a PM cake layer on the wall. After formation of the PM cake layer of about 1-2 µm on the wall, the PM cake becomes the primary filter and performs 98-99% of PM filtration. In all load cases, most of PM mass deposited was in the PM cake layer, and PM oxidation in the PM cake layer accounted for 95-99% of total PM mass oxidized during loading. Overall PM oxidation efficiency of the DOC-CPF device increased with increasing CPF inlet temperatures and NO2 flow rates, and was higher in the CCRT® configuration compared to the CPF-only configuration due to higher CPF inlet NO2 concentrations. Filtration efficiencies greater than 90% were observed within 90-100 minutes of loading time (starting with a clean filter) in all load cases, due to the fact that the PM cake on the substrate wall forms a very efficient filter. A good strategy for maintaining high filtration efficiency and low pressure drop of the device while performing active regeneration would be to clean the PM cake filter partially (i.e., by retaining a cake layer of 1-2 µm thickness on the substrate wall) and to completely oxidize the PM deposited in the substrate wall. The data presented support this strategy.
Resumo:
Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.
Resumo:
This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.
Resumo:
Two new approaches to quantitatively analyze diffuse diffraction intensities from faulted layer stacking are reported. The parameters of a probability-based growth model are determined with two iterative global optimization methods: a genetic algorithm (GA) and particle swarm optimization (PSO). The results are compared with those from a third global optimization method, a differential evolution (DE) algorithm [Storn & Price (1997). J. Global Optim. 11, 341–359]. The algorithm efficiencies in the early and late stages of iteration are compared. The accuracy of the optimized parameters improves with increasing size of the simulated crystal volume. The wall clock time for computing quite large crystal volumes can be kept within reasonable limits by the parallel calculation of many crystals (clones) generated for each model parameter set on a super- or grid computer. The faulted layer stacking in single crystals of trigonal three-pointedstar- shaped tris(bicylco[2.1.1]hexeno)benzene molecules serves as an example for the numerical computations. Based on numerical values of seven model parameters (reference parameters), nearly noise-free reference intensities of 14 diffuse streaks were simulated from 1280 clones, each consisting of 96 000 layers (reference crystal). The parameters derived from the reference intensities with GA, PSO and DE were compared with the original reference parameters as a function of the simulated total crystal volume. The statistical distribution of structural motifs in the simulated crystals is in good agreement with that in the reference crystal. The results found with the growth model for layer stacking disorder are applicable to other disorder types and modeling techniques, Monte Carlo in particular.
Resumo:
Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most topologies used for high DC voltage/low DC voltage conversion is the Buck converter. It is obtained as a second order system with a LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core instead of air core lets design converters with smaller size. If high switching frequencies are used for obtaining high quality voltage output, the value of the auto inductance L is reduced throughout the time. Then, robust controllers are needed if the accuracy of the converter response must not be affected by auto inductance and load variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a not-toohigh switching frequency is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results are presented.
Resumo:
Como consecuencia del proceso de desalación, se produce el vertido al mar de un agua de rechazo hipersalino o salmuera. La salinidad de este vertido es variable, dependiendo del origen de la captación y del proceso de tratamiento. Muchos de los hábitats y biocenosis de los ecosistemas marinos se encuentran adaptados a ambientes de salinidad casi constante y son muy susceptibles a los incrementos de salinidad originados por estos vertidos. Junto con el vertido de salmuera otro de los principales inconvenientes que plantean las plantas desaladoras es el alto consumo energético, con todas las desventajas que esto supone: alto coste del agua desalada para los consumidores, contaminación del medio... El desarrollo de los métodos de vertido, herramientas de gestión de la salmuera, estudios del comportamiento de la pluma salina… ha buscado la mitigación de estos efectos sobre los ecosistemas marinos. El desarrollo en membranas de ósmosis inversa, diseño de bombas y sistemas de recuperación de energía ha permitido también la reducción del consumo energético en las plantas de desalación. Sin embargo, estos campos parecen haber encontrado un techo tecnológico difícil de rebasar en los últimos tiempos. La energía osmótica se plantea como uno de los caminos a investigar aplicado al campo de la reducción del consumo energético en desalación de agua de mar, a través del aprovechamiento energético de la salmuera. Con esta tesis se pretende cumplir principalmente con los siguientes objetivos: reducción del consumo energético en desalación, mitigar el impacto del vertido sobre el medio y ser una nueva herramienta en la gestión de la salmuera. En el presente documento se plantea el desarrollo de un nuevo proceso que utiliza el fenómeno de la ósmosis directa a través de membranas semipermeables, y busca la sinergia desalación depuración, integrando ambos, en un único proceso de tratamiento dentro del ciclo integral del agua. Para verificar los valores de producción, calidad y rendimiento del proceso, se proyecta y construye una planta piloto ubicada en la Planta Desaladora de Alicante II, escalada de tal manera que permite la realización de los ensayos con equipos comerciales de tamaño mínimo. El objetivo es que el resultado final sea extrapolable a tamaños superiores sin que el escalado afecte a la certeza y fiabilidad de las conclusiones obtenidas. La planta se proyecta de forma que el vertido de una desaladora de ósmosis inversa junto con el vertido de un terciario convencional, se pasan por una ósmosis directa y a continuación por una ósmosis inversa otra vez, ésta última con el objeto de abrir la posibilidad de incrementar la producción de agua potable. Ambas ósmosis están provistas de un sistema de pretratamiento físico-químico (para adecuar la calidad del agua de entrada a las condiciones requeridas por las membranas en ambos casos), y un sistema de limpieza química. En todos los ensayos se usa como fuente de disolución concentrada (agua salada), el rechazo de un bastidor de ósmosis inversa de una desaladora convencional de agua de mar. La fuente de agua dulce marca la distinción entre dos tipos de ensayos: ensayos con el efluente del tratamiento terciario de una depuradora convencional, con lo que se estudia el comportamiento de la membrana ante el ensuciamiento; y ensayos con agua permeada, que permiten estudiar el comportamiento ideal de la membrana. Los resultados de los ensayos con agua salobre ponen de manifiesto problemas de ensuciamiento de la membrana, el caudal de paso a través de la misma disminuye con el tiempo y este efecto se ve incrementado con el aumento de la temperatura del agua. Este fenómeno deriva en una modificación del pretratamiento de la ósmosis directa añadiendo un sistema de ultrafiltración que ha permitido que la membrana presente un comportamiento estable en el tiempo. Los ensayos con agua permeada han hecho posible estudiar el comportamiento “ideal” de la membrana y se han obtenido las condiciones óptimas de operación y a las que se debe tender, consiguiendo tasas de recuperación de energía de 1,6; lo que supone pasar de un consumo de 2,44 kWh/m3 de un tren convencional de ósmosis a 2,28 kWh/m3 al añadir un sistema de ósmosis directa. El objetivo de futuras investigaciones es llegar a tasas de recuperación de 1,9, lo que supondría alcanzar consumos inferiores a 2 kWh/m3. Con esta tesis se concluye que el proceso propuesto permite dar un paso más en la reducción del consumo energético en desalación, además de mitigar los efectos del vertido de salmuera en el medio marino puesto que se reduce tanto el caudal como la salinidad del vertido, siendo además aplicable a plantas ya existentes y planteando importantes ventajas económicas a plantas nuevas, concebidas con este diseño. As a consequence of the desalination process, a discharge of a hypersaline water or brine in the sea is produced. The salinity of these discharges varies, depending on the type of intake and the treatment process. Many of the habitats and biocenosis of marine ecosystems are adapted to an almost constant salinity environment and they are very susceptible to salinity increases caused by these discharges. Besides the brine discharge, another problem posed by desalination plants, is the high energy consumption, with all the disadvantages that this involves: high cost of desalinated water for consumers, environmental pollution ... The development of methods of disposal, brine management tools, studies of saline plume ... has sought the mitigation of these effects on marine ecosystems. The development of reverse osmosis membranes, pump design and energy recovery systems have also enabled the reduction of energy consumption in desalination plants. However, these fields seem to have reached a technological ceiling which is difficult to exceed in recent times. Osmotic power is proposed as a new way to achieve the reduction of energy consumption in seawater desalination, through the energy recovery from the brine. This thesis mainly tries to achieve the following objectives: reduction of energy consumption in desalination, mitigation of the brine discharge impact on the environment and become a new tool in the management of the brine. This paper proposes the development of a new process, that uses the phenomenon of forward osmosis through semipermeable membranes and seeks the synergy desalination-wastewater reuse, combining both into a single treatment process within the integral water cycle. To verify the production, quality and performance of the process we have created a pilot plant. This pilot plant, located in Alicante II desalination plant, has been designed and built in a scale that allows to carry out the tests with minimum size commercial equipment. The aim is that the results can be extrapolated to larger sizes, preventing that the scale affects the accuracy and reliability of the results. In the projected plant, the discharge of a reverse osmosis desalination plant and the effluent of a convencional tertiary treatment of a wastewater plant, go through a forward osmosis module, and then through a reverse osmosis, in order to open the possibility of increasing potable water production. Both osmosis systems are provided with a physicochemical pretreatment (in order to obtain the required conditions for the membranes in both cases), and a chemical cleaning system. In all tests, it is used as a source of concentrated solution (salt water), the rejection of a rack of a conventional reverse osmosis seawater desalination. The source of fresh water makes the difference between two types of tests: test with the effluent from a tertiary treatment of a conventional wastewater treatment plant (these tests study the behavior of the membrane facing the fouling) and tests with permeate, which allow us to study the ideal behavior of the membrane. The results of the tests with brackish water show fouling problems, the flow rate through the membrane decreases with the time and this effect is increased with water temperature. This phenomenon causes the need for a modification of the pretreatment of the direct osmosis module. An ultrafiltration system is added to enable the membrane to present a stable behavior . The tests with permeate have made possible the study of the ideal behavior of the membrane and we have obtained the optimum operating conditions. We have achieved energy recovery rates of 1.6, which allows to move from a consumption of 2.44 kWh/m3 in a conventional train of reverse osmosis to 2.28 kWh / m3 if it is added the direct osmosis system. The goal of future researches is to achieve recovery rates of 1.9, which would allow to reach a consumption lower than 2 kWh/m3. This thesis concludes that the proposed process allows us to take a further step in the reduction of the energy consumption in desalination. We must also add the mitigation of the brine discharge effects on the marine environment, due to the reduction of the flow and salinity of the discharge. This is also applicable to existing plants, and it suggests important economic benefits to new plants that will be built with this design.
Resumo:
The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.