896 resultados para Liouvillean, thermal equilibrium, return to equilibrium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de Larmor finito são incluídos em cada um dos mapas. No limite do raio de Larmor tendendo a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist. Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado na contagem dos tempos de recorrência é proposto para analisar a influência do raio de Larmor sobre os parâmetros críticos que definem a quebra de barreiras de transporte. Também estudamos um modelo para um sistema de partículas onde a deriva elétrica é descrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que assume valores específicos para cada partícula do sistema. A função densidade de probabilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann, que caracteriza plasmas na condição de equilíbrio térmico. Um importante parâmetro neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de ordem zero avaliada no raio de Larmor da partícula. Resultados analíticos e numéricos descrevendo as principais propriedades estatísticas do parâmetro gama são apresentados. Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de escape e a taxa de aprisionamento por ilhas de período um.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Middle Valley segment at the northern end of the Juan de Fuca Ridge is a deep extensional rift blanketed with 200-500 m of Pleistocene turbiditic sediment. Sites 857 and 858 were drilled during Ocean Drilling Program Leg 139 to determine whether these two sites were hydrologically linked end members of an active hydrothermal circulation system. Site 858 was placed in an area of active hydrothermal discharge with fluids up to 270°C venting through anhydrite-bearing mounds on top of altered sediment. The shallow basement of fine-grained basalt that underlies the vents at Site 858 is interpreted as a seamount that was subsequently buried by turbidites. Site 857 was placed 1.6 km south of the Site 858 vents in a zone of high heat flow and numerous seismically imaged ridge-parallel faults. Drilling at Site 857 encountered sediments that are increasingly altered with depth and that overlie a series of mafic sills at depths of 460-940 m below sea floor. Sill margins and adjacent baked sediment are highly altered to magnesian chlorite and crosscut with veins filled with quartz, chlorite, sulfides, epidote, and wairakite. The sill interiors vary from slightly altered, with unaltered plagioclase and clinopyroxene in a mesostasis replaced by chlorite, to local zones of intense alteration and brecciation. In these latter zones, the sill interiors are pervasively replaced by chlorite, epidote, quartz, pyrite, titanite, and rare actinolite. The most complete replacement is associated with brecciated horizons with low recovery and slickensides on fracture surfaces, which we interpret as intersections between faults and the sills. Geochemically, the alteration of the sill complex is reflected in significant whole-rock depletions in Ca, Sr, and Na with corresponding enrichments in Mg, Al, and most metals. The latter results from the formation of conspicuous sulfide poikiloblasts. In contrast, metamorphism of the Site 858 seamount includes incomplete albitization of plagioclase phenocrysts and replacement of sparse mafic phenocrysts. Much of the basement alteration at Site 858 is confined to crosscutting veins except for a highly altered and veined horizon at the contact between basaltic basement and the overlying sediment. The sill complex at Site 857 is more highly depleted in 18O (d18O = 2.4 per mil - 4.7 per mil) and more pervasively replaced by secondary minerals relative to the extrusives at Site 858 (d18O = 4.5 per mil - 5.5 per mil). There is no evidence of significant albitization of the plagioclase at Site 857, suggesting high Ca/Na in the pore fluids. Fluid-inclusion data from hydrothermal minerals in altered mafic rocks and veins at Sites 857 and 858 show a consistency of homogenization temperatures, varying from 245 to 270°C, which is within the range of temperatures observed for the fluids venting at Site 858. The consistency of the fluid inclusion temperatures, the lack of albitization within the Site 857 sills, and the apparently low water/rock ratio collectively suggest that the sill complex at Site 857 is in thermal equilibrium and being altered by a highly evolved Ca-rich fluid similar to the fluids now venting at Site 858. The alteration evident in these two deep crustal drillsites is a result of the ongoing hydrothermal circulation and is consistent with downhole logging results, instrumented borehole results, and hydrothermal fluid chemistry. The pervasive alteration of the laterally extensive sill-sediment complex at Site 857 determines the chemistry of the fluids that are venting at Site 858. The limited alteration of the Site 858 lavas suggests that this basement edifice acts as a penetrator or ventilator for the regional hydrothermal reservoir with much of the flow focussed at the highly altered and veined sediment-basalt contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air-acetylene flame. A peak temperature of (2600 +/- 100) K and a peak OH number density of (9.6 +/- 0.3) X 10(22) m(-3) are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium. (C) 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi-Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic parameters for the epimerization of isoleucine in multispecific foraminiferal asemblages were used to establish the effects of burial depth and the geothermal gradient on the extent of reaction. It was observed that with a little as thirty meters of burial in a normal thermal regime there were differences between the extent of epimerization measured and that which would have been predicted for thermal equilibrium with bottom water temperatures. As would be expected, these differences are greatest when the heat flow (the geothermal gradient) and/or the sedimentation rates are highest. These effects were observed in most of the DSDP samples studied, and have been used to estimate the average heat flux since the time of sample deposition. Occasional anomalous effects were observed which could not be related to past or present heat flux. These were determined to be due to such geologic occurrences as slumping and reworking or to recent sample contamination. Other problems emerged related to bottom water temperatures including changes over geologic time which are unknown and could not be deduced. Thus, the presence of epimerization anomalies in DSDP cores as noted above limits the effectiveness of amino acid geochronology in such cores, unless these anomalies can be recognized as ab initio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large, pregnant, female bull shark Carcharhinus leucas was tracked migrating from Seychelles across open ocean to south-east Madagascar, c. 2000 km away, and back again. In Madagascar, the shark spent a prolonged period shallower than 5 m, consistent with entering estuarine habitat to pup, and upon return to Seychelles the shark was slender and no longer gravid. This represents an unprecedented return migration across the open ocean for a C. leucas and highlights the need for international collaboration to manage the regional C. leucas population sustainably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large, pregnant, female bull shark Carcharhinus leucas was tracked migrating from Seychelles across open ocean to south-east Madagascar, c. 2000 km away, and back again. In Madagascar, the shark spent a prolonged period shallower than 5 m, consistent with entering estuarine habitat to pup, and upon return to Seychelles the shark was slender and no longer gravid. This represents an unprecedented return migration across the open ocean for a C. leucas and highlights the need for international collaboration to manage the regional C. leucas population sustainably.