968 resultados para Leukemia, Erythroblastic, Acute
Resumo:
We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.
Resumo:
In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.
Resumo:
The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.
Resumo:
Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.
Resumo:
Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.
Resumo:
The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Increased plasma fibrinogen levels are associated with shortened overall survival (OS) in some solid tumor types. In contrast, the prognostic significance of varying fibrinogen levels in acute myeloid leukemia (AML) at diagnosis is unknown. In this study, we assessed the prognostic significance of fibrinogen levels in AML patients. In a comprehensive retrospective single-center study, we determined the survival rates of 375 consecutive AML patients undergoing at least one cycle of intensive chemotherapy induction treatment. Patients were dichotomized between low (<4.1 g/L) and high fibrinogen levels (≥4.1 g/L) at diagnosis of AML before initiation of treatment. Subsequently, quartile ranges were applied to analyze the association of varying fibrinogen levels on survival. We observed that the rates of complete remission, early death, and admission to intensive care unit were equal in the low versus high fibrinogen group. However, OS was significantly better in the low fibrinogen group (27.3 vs 13.5 months; p = 0.0009) as well as progression-free survival (12.3 vs 7.8 months; p = 0.0076). This survival difference remained significant in the multivariate analysis (p = 0.003). Assessing quartiles of fibrinogen values, we further confirmed this observation. Our data suggest that high fibrinogen levels at diagnosis of AML are associated with unfavorable OS and progression-free survival but not with increased mortality during induction treatment.
Resumo:
Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P
Resumo:
Scedosporium prolificans is a saprophytic fungus responsible for an increasing number of infections among immumocompromised hosts. Historically, disseminated infection with this organism has resulted in death. We report on a pediatric patient who developed overwhelming S. prolificans sepsis after induction chemotherapy for acute lymphoblastic leukemia. She is well 18 months after the diagnosis of fungal sepsis and continues to receive chemotherapy for leukemia, which remains in remission.
Resumo:
Background: Changes in body composition are commonly reported in pediatric survivors of acute lymphoblastic leukemia (ALL). However, the effect of ALL and of its treatment on body composition in children in remission from ALL has not been fully examined with the use of a reference method. Objectives: We aimed to determine the body composition and composition of fat-free mass (FFM) in children in remission from ALL. We also aimed to compare the effects that prednisolone and dexamethasone had on the body composition of an ALL survivor population. Design: This cross-sectional study measured height, weight, body volume, total body water, and bone mineral content in 24 children in remission from ALL and 24 age-matched, healthy control subjects. Body composition and FFM composition were evaluated by using the 4-component model. Results: The mean body mass index and fat mass index were significantly (P = 0.05 for both) higher in the ALL survivors than in age-matched control subjects. The composition of the FFM in the 2 treatment groups was not observed to differ significantly. Examination of the composition of FFM made it evident that children in remission from ALL had both significantly greater hydration (P = 0.001) and lower density (P = 0.0001) of FFM than did the control children. Conclusions: Children in remission from ALL may develop excess body fat. To measure body composition accurately in an ALL population, the high hydration and low density of FFM in this population should be taken into consideration.
Resumo:
Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children and is responsible for severe stomatologic complications. Treatment consists of four phases of chemotherapy, the main side effect of methotrexate, the drug most used during the intensification phase, is oral mucositis. OBJECTIVE: To evaluate the clinical aspects of the oral mucosa of children with ALL and to determine the effect of 0.12% chlorhexidine gluconate on the prevention of stomatologic complications in these patients. PATIENTS AND METHODS: Thirty-three children treated for ALL ranging in age from 2 to 15 years, without distinction of gender or race, were submitted to visual examination, digital palpation of the oral mucosa and cytologic examination of the buccal mucosa, and divided into two groups: group I consisted of 23 children using an oral solution of 0.12% chlorhexidine gluconate twice a day, and group II consisted of 10 children who did not receive this solution. All children received daily oral hygiene care guided by the dentist throughout treatment. RESULTS: Mucositis was observed in six children of group I and eight of group II, and was characterized by erythema, edema and ulcers. Uniform cytologic findings were obtained for the two groups, with a clear predominance of cells of the intermediate layer in all smears, in addition to a perinuclear halo in 18% of the smears. CONCLUSION: The present results suggest that systematic preventive treatment with 0.12% chlorhexidine gluconate and oral hygiene care reduce the occurrence of oral complications in children with ALL undergoing antineoplastic chemotherapy.