326 resultados para Learning journal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the effects of chronic intoxication with the heavy metals lead (Pb2+) and zinc (Zn2+) on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05). In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05). Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05), an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied some of the characteristics of the improving effect of the non-specific adenosine receptor antagonist, caffeine, using an animal model of learning and memory. Groups of 12 adult male Wistar rats receiving caffeine (0.3-30 mg/kg, ip, in 0.1 ml/100 g body weight) administered 30 min before training, immediately after training, or 30 min before the test session were tested in the spatial version of the Morris water maze task. Post-training administration of caffeine improved memory retention at the doses of 0.3-10 mg/kg (the rats swam up to 600 cm less to find the platform in the test session, P<=0.05) but not at the dose of 30 mg/kg. Pre-test caffeine administration also caused a small increase in memory retrieval (the escape path of the rats was up to 500 cm shorter, P<=0.05). In contrast, pre-training caffeine administration did not alter the performance of the animals either in the training or in the test session. These data provide evidence that caffeine improves memory retention but not memory acquisition, explaining some discrepancies among reports in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clinical study of Brazilian patients with neurofibromatosis type 1 (NF1) was performed in a multidisciplinary Neurofibromatosis Program called CEPAN (Center of Research and Service in Neurofibromatosis). Among 55 patients (60% females, 40% males) who met the NIH criteria for the diagnosis of NF1, 98% had more than six café-au-lait patches, 94.5% had axillary freckling, 45% had inguinal freckling, and 87.5% had Lisch nodules. Cutaneous neurofibromas were observed in 96%, and 40% presented plexiform neurofibromas. A positive family history of NF1 was found in 60%, and mental retardation occurred in 35%. Some degree of scoliosis was noted in 49%, 51% had macrocephaly, 40% had short stature, 76% had learning difficulties, and 2% had optic gliomas. Unexpectedly high frequencies of plexiform neurofibromas, mental retardation, learning difficulties, and scoliosis were observed, probably reflecting the detailed clinical analysis methods adopted by the Neurofibromatosis Program. These same patients were screened for mutations in the GAP-related domain/GRD (exons 20-27a) by single-strand conformation polymorphism. Four different mutations (Q1189X, 3525-3526delAA, E1356G, c.4111-1G>A) and four polymorphisms (c.3315-27G>A, V1146I, V1317A, c.4514+11C>G) were identified. These data were recently published.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to determine the effect of the histaminergic precursor L-histidine and the H3 receptor antagonist thioperamide on the learning process of zebrafish submitted or not to confinement stress. On each of the 5 consecutive days of experiment (D1, D2, D3, D4, D5), animals had to associate an interruption of the aquarium air supply with food offering. Non-stressed zebrafish received an intraperitoneal injection of 100 mg/kg L-histidine, 10 mg/kg thioperamide or saline after training. Stressed animals received drug treatment and then were submitted to confinement stress for 1 h before the learning procedure. Time to approach the feeder was measured (in seconds) and was considered to be indicative of learning. A decrease in time to approach the feeder was observed in the saline-treated group (D1 = 141.92 ± 13.57; D3 = 55 ± 13.54), indicating learning. A delay in learning of stressed animals treated with saline was observed (D1 = 217.5 ± 25.66). L-histidine facilitated learning in stressed (D1 = 118.68 ± 13.9; D2 = 45.88 ± 8.2) and non-stressed (D1 = 151.11 ± 19.20; D5 = 62 ± 14.68) animals. Thioperamide inhibited learning in non-stressed (D1 = 110.38 ± 9.49; D4 = 58.79 ± 16.83) and stressed animals (D1 = 167.3 ± 26.39; D5 = 172.15 ± 27.35). L-histidine prevented the increase in blood glucose after one session of confinement (L-histidine = 65.88 ± 4.50; control = 53 ± 3.50 mg/dL). These results suggest that the histaminergic system enhances learning and modulates stress responses in zebrafish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the phenomenon of learning generalization of a specific skill of auditory temporal processing (temporal order detection) in children with dyslexia. The frequency order discrimination task was applied to children with dyslexia and its effect after training was analyzed in the same trained task and in a different task (duration order discrimination) involving the temporal order discrimination too. During study 1, one group of subjects with dyslexia (N = 12; mean age = 10.9 ± 1.4 years) was trained and compared to a group of untrained dyslexic children (N = 28; mean age = 10.4 ± 2.1 years). In study 2, the performance of a trained dyslexic group (N = 18; mean age = 10.1 ± 2.1 years) was compared at three different times: 2 months before training, at the beginning of training, and at the end of training. Training was carried out for 2 months using a computer program responsible for training frequency ordering skill. In study 1, the trained group showed significant improvement after training only for frequency ordering task compared to the untrained group (P < 0.001). In study 2, the children showed improvement in the last interval in both frequency ordering (P < 0.001) and duration ordering (P = 0.01) tasks. These results showed differences regarding the presence of learning generalization of temporal order detection, since there was generalization of learning in only one of the studies. The presence of methodological differences between the studies, as well as the relationship between trained task and evaluated tasks, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormone decline is common to all women during aging and, associated with other factors, leads to cognitive impairment. Its replacement enhances cognitive performance, but not all women present a clinical and family or personal history that justifies its use, mainly women with a history of cancer. The aim of this study was to determine whether a daily oral dose of 80 mg of isoflavone extract for 4 months can produce benefits in women with low hormone levels, contributing to improvement in cognitive aspects. The sample comprised 50- to 65-year-old women whose menstruation had ceased at least 1 year before and who had not undergone hormone replacement. The volunteers were allocated to two groups of 19 individuals each, i.e., isoflavone and placebo. There was a weak correlation between menopause duration and low performance in the capacity to manipulate information (central executive). We observed an increase in the capacity to integrate information in the group treated with isoflavone, but no improvement in the capacity to form new memories. We did not observe differences between groups in terms of signs and symptoms suggestive of depression according to the Geriatric Depression Scale. Our results point to a possible beneficial effect of isoflavone on some abilities of the central executive. These effects could also contribute to minimizing the impact of memory impairment. Further research based on controlled clinical trials is necessary to reach consistent conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.