847 resultados para Learning Design
Resumo:
Engineering students are best able to understand theory when one explains it in relation to realistic problems and its practical applications. Teaching theory in isolation has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure. At Queensland University of Technology, a number of new methods have been introduced recently to improve the teaching and learning of steel structural design at undergradt1ate level. In the basic steel structures subject a project-based teaching method was introduced in which the students were required to analyse, design and build the lightest I most efficient steel columns for a given target capacity. A design assignment involving simple, but real structures was also introduced in the basic steel structures subject. Both these exercises simulated realistic engineering problems from the early years of the course and produced a range of benefits. Improvements to the teaching and learning was also made through integration of a number of related structural engineering subjects and by the introduction of animated computer models and laboratory models. This paper presents the details of all these innovative methods which improved greatly the students' understanding of the steel structures design process.
Resumo:
There is a growing awareness of the high levels of psychological distress being experienced by law students and the practising profession in Australia. In this context, a Threshold Learning Outcome (TLO) on self-management has been included in the six TLOs recently articulated as minimum learning outcomes for all Australian graduates of the Bachelor of Laws degree (LLB). The TLOs were developed during 2010 as part of the Australian Learning and Teaching Council’s (ALTC’s) project funded by the Australian Government to articulate ‘Learning and Teaching Academic Standards’. The TLOs are the result of a comprehensive national consultation process led by the ALTC’s Discipline Scholars: Law, Professors Sally Kift and Mark Israel.1 The TLOs have been endorsed by the Council of Australian Law Deans (CALD) and have received broad support from members of the judiciary and practising profession, representative bodies of the legal profession, law students and recent graduates, Legal Services Commissioners and the Law Admissions Consultative Committee. At the time of writing, TLOs for the Juris Doctor (JD) are also being developed, utilising the TLOs articulated for the LLB as their starting point but restating the JD requirements as the higher order outcomes expected of graduates of a ‘Masters Degree (Extended)’, this being the award level designation for the JD now set out in the new Australian Qualifications Framework.2 As Australian law schools begin embedding the learning, teaching and assessment of the TLOs in their curricula, and seek to assure graduates’ achievement of them, guidance on the implementation of the self-management TLO is salient and timely.
Resumo:
This study involves teaching engineering students concepts in lubrication engineering that are heavily dependent on mathematics. Excellent learning outcomes have been observed when assessment tasks are devised for a diversity of learning styles. Providing different pathways to knowledge reduces the probability that a single barrier halts progress towards the ultimate learning objective. The interdisciplinary nature of tribology can be used advantageously to tie together multiple elements of engineering to solve real physical problems—an approach that seems to benefit a majority of engineering students. To put this into practice, various assessment items were devised on the study of hydrodynamics, culminating in a project to provide a summative evaluation of the students’ learning achievement. A survey was also conducted to assess other aspects of students’ learning experiences under the headings: ‘perception of learning’ and ‘overall satisfaction’. High degrees of achievement and satisfaction were observed. An attempt has been made to identify the elements contributing to success so that they may be applied to other challenging concepts in engineering education.
Resumo:
This study is an evaluation of design students’ perceptions of the benefits of collective learning in a real-world collaborative design studio. Third year students worked in inter-disciplinary teams representing architecture, interior design, landscape architecture, and industrial design. Responding to a real-world brief and in consultation with an industry partner client and early childhood education pre-service teachers, the teams were required to collectively propose a design response for a community-based child and family centre, on an iconic koala sanctuary site. Data were collected using several methods including a participatory action research method, through the form of a large analogue, collaborative jigsaw puzzle. Using a grounded theory methodology, qualitative data were thematically analysed to reveal six distinct aspects of collaboration, which positively impacted the students’ learning experience. The results of this study include recommendations for improving real world collaboration in the design studio in preparation for students’ transition into professional practice.
Resumo:
This case study examined the use of global English language teaching coursebooks by five teachers to teach English language use to students in Thailand where English is a foreign language. Despite the complexities of English language use in Thailand, the coursebook and teachers emphasised sets of decontextualised linguistic structures to teach speaking and conversation. The students interpreted and applied the structures in different ways with varied awareness of the effects of their linguistic choices. Teachers were constrained by the coursebook, their understandings of culture, and knowledge of how to teach pragmatics highlighting implications for teacher education and coursebook design.
Resumo:
It has been nearly 25 years since the problems associated with passive learning in large undergraduate classes were first established by McDermott (1991). STEM education, for example North Carolina State University’s SCALE-UP project, has subsequently been influenced by some unique aspects of design studio education. While there are now many institutions applying SCALE-UP or similar approaches to enable lively interaction, enhanced learning, increased student engagement, and to teach many different content areas to classes of all sizes, nearly all of these have remained in the STEM fields (Beichner, 2008). Architectural education, although originally at the forefront of this field, has arguably been left behind. Architectural practice is undergoing significant change, globally. Access to new technology and the development of specialised architectural documentation software has scaffolded new building procurement methods and allowed consultant teams to work more collaboratively, efficiently and even across different time zones. Up until recently, the spatial arrangements, pedagogical approaches, and project work outcomes in the architectural design studio, have not been dissimilar to its inception. It is not possible to keep operating architectural design studios the same way that they have for the past two hundred years, with this new injection of high-end technology and personal mobile Wi-Fi enabled devices. Employing a grounded theory methodology, this study reviews the current provision of architectural design learning terrains across a range of tertiary institutions, in Australia. Some suggestions are provided for how these spaces could be modified to address the changing nature of the profession, and implications for how these changes may impact the design of future SCALE-UP type spaces outside of the discipline of architecture, are also explored.
Resumo:
Reggio Emilia is an educational philosophy that encourages teachers, students and their parents to collaborate and actively engage with the environment. This study investigates how the Reggio Emilia design approach was translated architecturally for a kindergarten in an Australian context, and provides insights into the operation of this Reggio kindergarten and the impact that it is now having on the occupants. It evaluates the original architectural design intent of the Reggio Emilia early childhood learning environment against its spatial provision. The relationship that the Reggio Emilia approach facilitates between students and the environment, and the contribution that this approach has on their learning, are also explored. Several key themes emerging from the Reggio values were identified in the literature. These were then used to inform an exploration of the kindergarten spaces and places.. Architects, teachers and a sustainability manager of the kindergarten were interviewed with their experiences constituting the primary data of this study. Using a Grounded Theory methodology, systematic data coding and analysis were then conducted. Themes and concepts that emerged from this process include: differing interpretations of the Reggio Emilia philosophy; motivations for neglect of traditional external structures and play equipment; the impact of education for sustainability; and the positive effects that Reggio Emilia is having on the rest of the institution’s development.
Resumo:
The aim of the study was to analyze and facilitate collaborative design in a virtual learning environment (VLE). Discussions of virtual design in design education have typically focused on technological or communication issues, not on pedagogical issues. Yet in order to facilitate collaborative design, it is also necessary to address the pedagogical issues related to the virtual design process. In this study, the progressive inquiry model of collaborative designing was used to give a structural level of facilitation to students working in the VLE. According to this model, all aspects of inquiry, such as creating the design context, constructing a design idea, evaluating the idea, and searching for new information, can be shared in a design community. The study consists of three design projects: 1) designing clothes for premature babies, 2) designing conference bags for an international conference, and 3) designing tactile books for visually impaired children. These design projects constituted a continuum of design experiments, each of which highlighted certain perspectives on collaborative designing. The design experiments were organized so that the participants worked in design teams, both face-to-face and virtually. The first design experiment focused on peer collaboration among textile teacher students in the VLE. The second design experiment took into consideration end-users needs by using a participatory design approach. The third design experiment intensified computer-supported collaboration between students and domain experts. The virtual learning environments, in these design experiments, were designed to support knowledge-building pedagogy and progressive inquiry learning. These environments enabled a detailed recording of all computer-mediated interactions and data related to virtual designing. The data analysis was based on qualitative content analysis of design statements in the VLE. This study indicated four crucial issues concerning collaborative design in the VLE in craft and design education. Firstly, using the collaborative design process in craft and design education gives rise to special challenges of building learning communities, creating appropriate design tasks for them, and providing tools for collaborative activities. Secondly, the progressive inquiry model of collaborative designing can be used as a scaffold support for design thinking and for reflection on the design process. Thirdly, participation and distributed expertise can be facilitated by considering the key stakeholders who are related to the design task or design context, and getting them to participate in virtual designing. Fourthly, in the collaborative design process, it is important that team members create and improve visual and technical ideas together, not just agree or disagree about proposed ideas. Therefore, viewing the VLE as a medium for collaborative construction of the design objects appears crucial in order to understand and facilitate the complex processes in collaborative designing.
Resumo:
This thesis is to establish a framework to guide the development of a simulated, multimedia-enriched, immersive, learning environment (SMILE) framework. This framework models essential media components used to describe a scenario applied in healthcare (in a dementia context), demonstrates interactions between the components, and enables scalability of simulation implementation. The thesis outcomes also include a simulation system developed in accordance with the guidance framework and a preliminary evaluation through a user study involving ten nursing students and practicioners. The results show that the proposed framework is feasible and effective for designing a simulation system in dementia healthcare training.
Resumo:
Considering the staggering benefits of high-performance schools, it seems an obvious choice to “go green.” High-performance schools offer an exceptionally cost-effective means to enhance student learning, using on average 33 percent less energy than conventionally designed schools, and provide substantial health gains, including reduced respiratory problems and absenteeism. According to the 2006 study, Greening America's Schools, Costs and Benefits, co-sponsored by the American Institute of Architects (AIA) and Capital E, a green building consulting firm, high-performance lighting is a key element of healthy learning environments, contributing to improved test scores, reduced off-task behavior, and higher achievement among students. Few argue this point more convincingly than architect Heinz Rudolf, of Portland-Oregon-based Boora Architects, who has designed sustainable schools for more than 80 school districts in Oregon, Washington, Colorado, and Wyoming, and has pioneered the high-performance school movement. Boora's recently completed project, the Baker Prairie Middle School in Canby, Oregon is one of the most sustainable K-12 facilities in the state, and illustrates Rudolf's progressive and research-intensive approach to school design.
Resumo:
This research is connected with an education development project for the four-year-long officer education program at the National Defence University. In this curriculum physics was studied in two alternative course plans namely scientific and general. Observations connected to the later one e.g. student feedback and learning outcome gave indications that action was needed to support the course. The reform work was focused on the production of aligned course related instructional material. The learning material project produced a customized textbook set for the students of the general basic physics course. The research adapts phases that are typical in Design Based Research (DBR). The research analyses the feature requirements for physics textbook aimed at a specific sector and frames supporting instructional material development, and summarizes the experiences gained in the learning material project when the selected frames have been applied. The quality of instructional material is an essential part of qualified teaching. The goal of instructional material customization is to increase the product's customer centric nature and to enhance its function as a support media for the learning process. Textbooks are still one of the core elements in physics teaching. The idea of a textbook will remain but the form and appearance may change according to the prevailing technology. The work deals with substance connected frames (demands of a physics textbook according to the PER-viewpoint, quality thinking in educational material development), frames of university pedagogy and instructional material production processes. A wide knowledge and understanding of different frames are useful in development work, if they are to be utilized to aid inspiration without limiting new reasoning and new kinds of models. Applying customization even in the frame utilization supports creative and situation aware design and diminishes the gap between theory and practice. Generally, physics teachers produce their own supplementary instructional material. Even though customization thinking is not unknown the threshold to produce an entire textbook might be high. Even though the observations here are from the general physics course at the NDU, the research gives tools also for development in other discipline related educational contexts. This research is an example of an instructional material development work together the questions it uncovers, and presents thoughts when textbook customization is rewarding. At the same time, the research aims to further creative customization thinking in instruction and development. Key words: Physics textbook, PER (Physics Education Research), Instructional quality, Customization, Creativity
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
On introduit une nouvelle classe de schémas de renforcement des automates d'apprentissage utilisant les estimations des caractéristiques aléatoires de l'environnement. On montre que les algorithmes convergent en probabilité vers le choix optimal des actions. On présente les résultats de simulation et on suggère des applications à un environnement à plusieurs apprentissages