958 resultados para Kalman filter stability
Resumo:
Research on inverted pendulum has gained momentum over the last decade on a number of robotic laboratories over the world; due to its unstable proprieties is a good example for control engineers to verify a control theory. To verify that the pendulum can balance we can make some simulations using a closed-loop controller method such as the linear quadratic regulator or the proportional–integral–derivative method. Also the idea of robotic teleoperation is gaining ground. Controlling a robot at a distance and doing that precisely. However, designing the tool to takes the best benefit of the human skills while keeping the error minimal is interesting, and due to the fact that the inverted pendulum is an unstable system it makes a compelling test case for exploring dynamic teleoperation. Therefore this thesis focuses on the construction of a two-wheel inverted pendulum robot, which sensor we can use to do that, how they must be integrated in the system and how we can use a human to control an inverted pendulum. The inverted pendulum robot developed employs technology like sensors, actuators and controllers. This Master thesis starts by presenting an introduction to inverted pendulums and some information about related areas such as control theory. It continues by describing related work in this area. Then we describe the mathematical model of a two-wheel inverted pendulum and a simulation made in Matlab. We also focus in the construction of this type of robot and its working theory. Because this is a mobile robot we address the theme of the teleoperation and finally this thesis finishes with a general conclusion and ideas of future work.
Resumo:
SANTANA, André M.; SANTIAGO, Gutemberg S.; MEDEIROS, Adelardo A. D. Real-Time Visual SLAM Using Pre-Existing Floor Lines as Landmarks and a Single Camera. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG. Anais... Juiz de Fora: CBA, 2008.
Sistema de detecção e isolamento de falhas em sistemas dinâmicos baseado em identificação paramétrica
Resumo:
The present research aims at contributing to the area of detection and diagnosis of failure through the proposal of a new system architecture of detection and isolation of failures (FDI, Fault Detection and Isolation). The proposed architecture presents innovations related to the way the physical values monitored are linked to the FDI system and, as a consequence, the way the failures are detected, isolated and classified. A search for mathematical tools able to satisfy the objectives of the proposed architecture has pointed at the use of the Kalman Filter and its derivatives EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter). The use of the first one is efficient when the monitored process presents a linear relation among its physical values to be monitored and its out-put. The other two are proficient in case this dynamics is no-linear. After that, a short comparative of features and abilities in the context of failure detection concludes that the UFK system is a better alternative than the EKF one to compose the architecture of the FDI system proposed in case of processes of no-linear dynamics. The results shown in the end of the research refer to the linear and no-linear industrial processes. The efficiency of the proposed architecture may be observed since it has been applied to simulated and real processes. To conclude, the contributions of this thesis are found in the end of the text
Resumo:
The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal
Resumo:
This work presents the localization and path planning systems for two robots: a non-instrumented humanoid and a slave wheeled robot. The localization of wheeled robot is made using odometry information and landmark detection. These informations are fused using a Extended Kalman Filter. The relative position of humanoid is acquired fusing (using another Kalman Filter) the wheeled robot pose with the characteristics of the landmark on the back of humanoid. Knowing the wheeled robot position and the humanoid relative position in relation to it, we acquired the absolute position of humanoid. The path planning system was developed to provide the cooperative movement of the two robots,incorporating the visibility restrictions of the robotic system
Resumo:
This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
This work intends to show a new and few explored SLAM approach inside the simultaneous localization and mapping problem (SLAM). The purpose is to put a mobile robot to work in an indoor environment. The robot should map the environment and localize itself in the map. The robot used in the tests has an upward camera and encoders on the wheels. The landmarks in this built map are light splotches on the images of the camera caused by luminaries on the ceil. This work develops a solution based on Extended Kalman Filter to the SLAM problem using a developed observation model. Several developed tests and softwares to accomplish the SLAM experiments are shown in details
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differencebeta - gamma in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35 mum CMOS process and V-DD=3.3 V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a triode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
Two Kalman-filter formulations are presented for the estimation of spacecraft sensor misalignments from inflight data. In the first the sensor misalignments are part of the filter state variable; in the second, which we call HYLIGN, the state vector contains only dynamical variables, but the sensitivities of the filter innovations to the misalignments are calculated within the Kalman filter. This procedure permits the misalignments to be estimated in batch mode as well as a much smaller dimension for the Kalman filter state vector. This results not only in a significantly smaller computational burden but also in a smaller sensitivity of the misalignment estimates to outliers in the data. Numerical simulations of the filter performance are presented.
Resumo:
In this paper, we discuss a method of preliminary orbit determination for an artificial satellite based on the navigation message of the GPS constellation. Orbital elements are considered as state variables and a simple dynamic model, based on the classic two-body problem, is used. The observations are formed by range and range and range-rate with respect to four visible GPS. A discrete Kalman filter with simulated data is used as filtering technique. The data are obtained through numerical propagation (Cowell's method), which considers special perturbations for the GPS satellite constellation and a user satellite. © 1997 COSPAR. Published by Elsevier Science Ltd.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.