882 resultados para Interval coding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signalling off-chip requires significant current. As a result, a chip's power-supply current changes drastically during certain output-bus transitions. These current fluctuations cause a voltage drop between the chip and circuit board due to the parasitic inductance of the power-supply package leads. Digital designers often go to great lengths to reduce this "transmitted" noise. Cray, for instance, carefully balances output signals using a technique called differential signalling to guarantee a chip has constant output current. Transmitted-noise reduction costs Cray a factor of two in output pins and wires. Coding achieves similar results at smaller costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coded structured light is an optical technique based on active stereovision that obtains the shape of objects. One shot techniques are based on projecting a unique light pattern with an LCD projector so that grabbing an image with a camera, a large number of correspondences can be obtained. Then, a 3D reconstruction of the illuminated object can be recovered by means of triangulation. The most used strategy to encode one-shot patterns is based on De Bruijn sequences. In This work a new way to design patterns using this type of sequences is presented. The new coding strategy minimises the number of required colours and maximises both the resolution and the accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considers bandpass filters, Huffman coding, arithmetic coding and Hamming coding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considers entropy, fixed length coding, Huffman coding and arithmetic coding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considers channel capacity, coding rate, repetition code, Hamming code, Hamming distance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considers Huffman coding and arithmetic coding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a model-based diagnosis system could be affected by several uncertainty sources, such as,model errors,uncertainty in measurements, and disturbances. This uncertainty can be handled by mean of interval models.The aim of this thesis is to propose a methodology for fault detection, isolation and identification based on interval models. The methodology includes some algorithms to obtain in an automatic way the symbolic expression of the residual generators enhancing the structural isolability of the faults, in order to design the fault detection tests. These algorithms are based on the structural model of the system. The stages of fault detection, isolation, and identification are stated as constraint satisfaction problems in continuous domains and solved by means of interval based consistency techniques. The qualitative fault isolation is enhanced by a reasoning in which the signs of the symptoms are derived from analytical redundancy relations or bond graph models of the system. An initial and empirical analysis regarding the differences between interval-based and statistical-based techniques is presented in this thesis. The performance and efficiency of the contributions are illustrated through several application examples, covering different levels of complexity.