850 resultados para Intelligent systems. Pipeline networks. Fuzzy logic
Resumo:
Kidney renal failure means that one’s kidney have unexpectedlystoppedfunctioning,i.e.,oncechronicdiseaseis exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapiddeteriorationoftherenalfunction,butisoftenreversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis. The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow onetoconsiderincomplete,unknown,and evencontradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.
Resumo:
The paper presents a competence-based instructional design system and a way to provide a personalization of navigation in the course content. The navigation aid tool builds on the competence graph and the student model, which includes the elements of uncertainty in the assessment of students. An individualized navigation graph is constructed for each student, suggesting the competences the student is more prepared to study. We use fuzzy set theory for dealing with uncertainty. The marks of the assessment tests are transformed into linguistic terms and used for assigning values to linguistic variables. For each competence, the level of difficulty and the level of knowing its prerequisites are calculated based on the assessment marks. Using these linguistic variables and approximate reasoning (fuzzy IF-THEN rules), a crisp category is assigned to each competence regarding its level of recommendation.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Research on autonomous intelligent systems has focused on how robots can robustly carry out missions in uncertain and harsh environments with very little or no human intervention. Robotic execution languages such as RAPs, ESL, and TDL improve robustness by managing functionally redundant procedures for achieving goals. The model-based programming approach extends this by guaranteeing correctness of execution through pre-planning of non-deterministic timed threads of activities. Executing model-based programs effectively on distributed autonomous platforms requires distributing this pre-planning process. This thesis presents a distributed planner for modelbased programs whose planning and execution is distributed among agents with widely varying levels of processor power and memory resources. We make two key contributions. First, we reformulate a model-based program, which describes cooperative activities, into a hierarchical dynamic simple temporal network. This enables efficient distributed coordination of robots and supports deployment on heterogeneous robots. Second, we introduce a distributed temporal planner, called DTP, which solves hierarchical dynamic simple temporal networks with the assistance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP has been demonstrated successfully on a wide range of randomly generated examples and on a pursuer-evader challenge problem in simulation.
Resumo:
Se basa en un análisis teórico de los sistemas de información como lo es el almacenaje de datos, cubos OLAP e inteligencia de negocios. Seguidamente, se hace un análisis de los sectores económicos de Colombia con un especial interés sobre el sector de alimentos, de esta manera conceptualizar la empresa sobre la cual este trabajo se enfocara. Se encontrará un análisis del caso de éxito Summerwood Corporation, el cual brindará una justificación para la propuesta final presentada a la empresa Dipsa Food, Pyme dedicada a la producción de alimentos no perecederos ubicada en la ciudad de Bogotá D.C –Colombia, la cual tiene gran interés en cuanto al desarrollo de nuevas tecnologías que brinden información fidedigna para la toma de decisiones
Resumo:
Este documento se centra en la presentación de información y análisis de la misma a la hora de establecer la manera en que empresas del sector de extracción de gas natural y generación de energía a base de dicho recurso, toman decisiones en cuanto a inversión, centrándose en la lógica que usan a la hora de emprender este proceso. Esto debido a la constante necesidad de establecer procesos que permitan tomar decisiones más acertadas, incluyendo todas las herramientas posibles para tal fin. La lógica es una de estas herramientas, pues permite encadenar factores con el fin de obtener resultados positivos. Por tal razón, se hace importante conocer el uso de esta herramienta, teniendo en cuentas de qué manera y en que contextos es usada. Con el fin de tener una mayor orientación, este estudio estará centrado en un sector específico, el cual es el de la extracción de petróleo y gas natural. Lo anterior entendiendo la necesidad existente de fundamentación teórica que permita establecer de manera clara la forma apropiada de tomar decisiones en un sector tan diverso y complejo como lo es el mencionado. El contexto empresarial actual exige una visión global, no basada en la lógica lineal causal que hoy se tiene como referencia. El sector de extracción de petróleo y gas natural es un ejemplo particular en cuanto a la manera en cuanto se toman decisiones en inversión, puesto que en su mayoría son empresas de capital intensivo, las cuales mantienen un flujo elevado de recursos monetarios.
Resumo:
Para el administrador el proceso de la toma de decisiones es uno de sus mayores retos y responsabilidades, ya que en su desarrollo se debe definir el camino más acertado en un sin número de alternativas, teniendo en cuenta los obstáculos sociales, políticos y económicos del entorno empresarial. Para llegar a la decisión adecuada no hay que perder de vista los objetivos y metas propuestas, además de tener presente el proceso lógico, detectando, analizando y demostrando el porqué de esa elección. Consecuentemente el análisis que propone esta investigación aportara conocimientos sobre los tipos de lógica utilizados en la toma de decisiones estratégicas al administrador para satisfacer las demandas asociadas con el mercadeo para que de esta manera se pueda generar y ampliar eficientemente las competencia idóneas del administrador en la inserción internacional de un mercado laboral cada vez mayor (Valero, 2011). A lo largo de la investigación se pretende desarrollar un estudio teórico para explicar la relación entre la lógica y la toma de decisiones estratégicas de marketing y como estos conceptos se combinan para llegar a un resultado final. Esto se llevara a cabo por medio de un análisis de planes de marketing, iniciando por conceptos básicos como marketing, lógica, decisiones estratégicas, dirección de marketing seguido de los principios lógicos y contradicciones que se pueden llegar a generar entre la fundamentación teórica
Resumo:
En el sector de la promoció construcció, i en especial, en el subsector de la promoció construcció d'habitatges, l'empresari ha de tenir un bon coneixement de les variables d'entorn ja que la consideració de les mateixes seran fonamentals a l'hora de prendre decisions sobre planificació estratègica. En l'actualitat vivim una fase de canvis socioeconòmics que dificulten la previsió del comportament futur de les variables d'entorn. Per tant, el subjecte decisor es troba en un ambient d'incertesa que s'aguditza per la majoritària presència de factors qualitatius difícils de quantificar. Llavors, l'empresari promotor constructor haurà de recórrer a tècniques operatives de gestió que tinguin present aquesta situació i això serà possible a partir de les eines que ens ofereix la lògica borrosa. Aquesta tesi s'ha estructurat en tres parts: En la primera part, exposem les característiques específiques i l'evolució del sector. En la segona part, expliquem la metodologia i, en la tercera part, exposem diverses aplicacions de la metodologia borrosa per l'establiment de noves estratègies de gestió aplicades al sector objecte d'estudi.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.