950 resultados para Iminic ligands
Resumo:
Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.
Resumo:
Reactions of [ Cp(2)Ln(mu-Cl)](2) (Cp = eta(5)-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [ (THF)(3)LiE2C2B10H10Li. (TT-IF) (THF)](2) (E = S, Se) in THF afforded the dinuclear sandwich complexes of formula[Cp(2)LnE(2)C(2)B(10)H(10)](2)[Li(THF)(4)](2) [E = S, Ln = Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E = Se, Ln = Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (eta(1), eta(2)-E2C2B10H10) bridging ligands and the central Ln(2)E(2) four membered ring is not planar.
Resumo:
Reactions of the Rh hydrido complex [Rh(H)(2)(PPh3)(2)(EtOH)(2)]ClO4 (1) With nitrogen ligands such as 2-(4-thiazolyl)benzimidazole (tbz). pyridazine (pdz), imidazole (im) and pyrimidine (pmd) in CH,Cl, afforded Various mononuclear Rh hydrido complexes, [Rh(H)(2)(PPh3)(2)(tbz)]CIO4 (2), [Rh(H)(2)(PPh3)(2)(pdZ)(2)]ClO(4)(.)2CH(2)Cl(2) (3). [Rh(H)Cl(PPh3)(2)(pdz)(2)](ClO4CH2Cl2)-C-. (4). [Rh(H)(2)(PPh3)(2)(im)(2)]ClO(4)(.)2CH(2)Cl(2) (5). [Rh(H)Cl(PPh3)(2)(im)(2)](ClO4CH2Cl2)-C-. (6). [Rh(H)(2)(PPh3)(2)(pmd)(2)](ClO4CH2Cl2)-C-. (7) and the Rh non-hydrido complex [RhCl2(pmd)(4)]ClO4 (8). The Rh complexes 2. 3, 5 and 6 were crystallographically characterized. The formation process was monitored by H-1 NMR and UV-Vis spectra. In all the Rh hydrido complexes, the Rh atom is coordinated by two PPh3. ligands in trans-positions and two nitrogen ligands in the cis-positions. The remaining sites Lire occupied by one or two hydride atoms to form a saturated 18-electron framework in a slightly distorted octahedral geometry. For complex 2 an appreciable inter-molecular pi interaction is observed between planes of tbz and PPh3 ligands, while an intra-molecular hydrogen bonding interaction between C-H and Cl atoms is found in complex 6.
Resumo:
Three prototypes of dinuclear complexes were obtained from the reactions of dilithium 1,2-dicarbacloso-dodecaborane-1,2-dichalcogenolates, (B10H10)C-2-(ELi)(2) (E = S, Se), with CpFe(CO)(2)Cl (1), CpRu(PPh3)(2)Cl (2), or [Cp*RuCl2](2) (3), respectively, and their structures have been determined by X-ray crystallography.
Resumo:
Reactions of Rh and Ir hydrido complexes. [Rh(H)(2)(PPh3)(2)(solv)(EtOH)]ClO4 (solv = Me2CO, 1a; EtOH, 1b) and [Ir(H)(2)(PPh3)(2)(Me2CO)(2)]BF4 (2), with various N,N'-donor bridging ligands, such as pyrazine (pyz), 4,4'-trimethylenedipyridine (tmdp) and di(4-pyridyl) disulfide (dpds), in some solvents were examined, and their reaction products were characterized by X-ray crystal structure analysis. IR, H-1 NMR and UV-vis spectra. Rh hydrido complexes, la or 1b, formed a dinuclear Rh complex, [Rh-2(PPh3)(2) {(eta(6)-C6H5PPh2}(2)] (ClO4)(2).6CH(2)Cl(2) (3.6CH(2)Cl(2)), in dichloromethane with a reductive elimination of hydrogen. The reactions of 1a or 1b with the pyz ligand in dichloromethane and tetrahydrofuran gave triangular Rh-3 complexes, [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).CH2Cl2 (5.CH2Cl2) and [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).EtOH (5.EtOH), respectively, in contrast to the formation of a dinuclear Rh hydrido complex, [Rh-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)](ClO4)(2).EtOH A-EtOH). in acetone. The reactions of la or 1b with the tmdp ligand in dichloromethane and 3-methyl-2-butanone also afforded dinuclear Rh complexes, [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2) (6) and [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2).4MeCOCHMe(2) (6.4MeCOCHMe(2)), respectively. On the other hand, Ir hydrido complex 2 reacted with pyz and dpds ligands in dichloromethane to afford dinuclear Ir complexes, [Ir-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)]- (BF4)(2).3CH(2)Cl(2) (7.3CH(2)Cl(2)) and [Ir-2(H)(4)(PPh3)(4)(dpds)(2)](BF4)(2).3CH(2)Cl(2).H2O (8.3CH(2)Cl(2).H2O), respectively, without any reductive elimination of hydrogen. Based on structural studies in solution and in the solid state. it was demonstrated that various Rh and Ir complexes were selectively produced depending on the choice of solvents and N,N'-donor bridging ligands.
Resumo:
Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.
Resumo:
Three bridging ligands (L) and their binuclear phenanthroline ruthenium(II) complexes {[Ru(1,10-phenanthroline)(2)](2)(L)}(PF6)(4) were synthesized and characterized by IR, H-1 NMR, and elemental analysis, where L are 1,8-adipoylamido-bis(1,10-phenanthroline-5-yl) (L-1), 1,11-azelaoylamidobis(1, 10-phenanthroline-5-yl) (L-2), and p-phthaloylamido-bis(1,10-phenanthroline-5-yl) (L-3).
Resumo:
The heterobimetallic complexes Cp * Rh(CN Bu-t)(EC5H4)(2)Fe [E = S(2),Se(3), Te(4)] have been synthesized by the reaction of halfsandwich rhodium complex Cp * Rh(CNtBu) Cl-2 with Fe(C5H4ELi)(2). 2THF. Oxidation of 2,3 by AgBF4 to give ferrocenium - type salts [Cp * Rh(CNtBu) (EC5H4)(2)Fe] (+) [BF4] (-) [E = S(5),Se(6)] also occurs readily. The new complexes have been characterized by MS IR, H-1 and C-13 NMR spectroscopy and elemental analysis.
Resumo:
The metallocene complexes ((BuC5H4)-Bu-t)(2)MCl2 (M=Ti (1a), Zr (1b), Hf (1c)) and (tBu2C5H3)(2)MCl2 (M=Ti (2a), Zr (2b), Hf (2c)) were synthesized by the react ions of Li (BuC5H4)-Bu-t and (LiBu2C5H3)-Bu-t with metal tetrachloride in THF solution. The complexes were characterized by their IR, H-1-NMR and EI-MS. The molecular structure of Ic was determined by X-ray single-crystal structure analysis. The complexes (1a similar to 2c) exhibited high activities for ethylene polymerizatin (up to 3.2x10(6) gPE/mol.h) in the presence of methylaluminoxane (MAO) at room temperature.
Resumo:
The reactions of half-sandwich diselenolate Mo and W complexes (CpM)-M-#(NO)(SePh)(2) (M = Mo; Cp-# = Cp' (1a), MeCp (1b); M = W; Cp-# = Cp' (1c)) with (Norb)Mo(CO)(4), Ni(COD)(2) and Fe(CO)(5) have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)(4) in PhMe gave the bimetallic complexes: Cp'Mo(NO)(mu -SePh)(2)Mo(CO)(4) (2a), MeCpMo(NO)(mu -SePh)(2)Mo(CO)(4) (2b) and Cp'W(NO)(mu -SePh)(2)Mo(CO)(4) (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)(5) gave heterobimetallic complexes Cp'Mo(CO)(mu -SePh)(2)Fe(CO)(3) (3a) and Cp'W(NO)(mu -SePh)(2)Fe(CO)(3) (3c). Ni(COD)(2) reacts with two equivalents of (1a), (1b) and (1c) to give [Cp'Mo(NO)(mu -SePh)(2)](2)Ni (4a), [MeCpMo(NO)(mu -SePh)(2)](2)Ni (4b) and [Cp'W(NO)(mu -SePh)(2)](2)Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., H-1-n.m.r., C-13-n.m.r. and EI-MS spectroscopy.
Resumo:
This article is to present and outline new approaches to chalcogen coordination chemistry from the organolanthanides point of view.
Resumo:
The reaction of [Cp*RhCl2](2) 1 with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dithiolate (a) and -diselenolate (b) afforded the 16-electron rhodium(III) half-sandwich complexes Cp*Rh[E2C2(B10H10)] [E=S (3a), Se (3b)]. The 18-electron trimethylphosphane rhodium(III) half-sandwiches Cp*Rh(PMe3)[E2C2(B10H10)] 4a-c were prepared from the reaction of Cp*RhCl2(PMe3) 2 with the same dichalcogenolates, including the ditelluride (c). The complexes 4a,b could also be obtained from the reaction of 3a,b with trimethylphosphane. The molecular geometry of 4b was determined by X-ray structural analysis. The 16-electron complexes 3 an monomeric in solution as shown by multinuclear magnetic resonance (H-1-, B-11-, C-13-, P-31- Se-77-, Rh-103-, Te-125-NMR). also in comparison with the data for the trimethylphosphane analogues 4a-c and for 6a in which the rhodium bears the eta(5)-1,3-C5H3 Bu-t(2) ligand. The Rh-103 nuclear shielding is reduced by 831 ppm (3a) and 1114 ppm (3b) with respect to the 18-electron complexes 4a,b. Similarly, the Se-77 nuclear shielding in 3b is reduced by 676.4 ppm with respect to that in 4b. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Thirty - two title complexes (ROCOCHRCH2SnCl3)-C-1 . (2 - HOC6H4CH = NC6H4 - X) (R = Me, Et, n - Bu; R-1 = H, Me; X = H,4' - Cl, 3' - Pr, 3' - OH, 3', 4' - Cl-2, 4' - OMe) were synthesized and characterized by elemental analysis,UV - vis, IR, H-1 NMR. The crystal structure of n - BuOCOCH2CH2SnCl3 . (2 - HOC6H4CH - NC6H4OMe - 4') were determined by the X - ray diffraction analysis, The crystal belongs to monoclinic system, with a = 1.4661 (3)nm, b = 0.9307 (2)nm, c = 1.7888 (4)nm, beta = 94.04 (3)degrees, V = 2.4348nm(3), D-c = 1.581mg/m(3), Z = 4, F(000) = 1160, mu = 1.405mm(-1), R = 0.0354, R-w = 0,0486, space group: P2(1)/c. The complexes exist as a discrete monomer. The tin atom has a distorted octahedral geometry due to intramolecular coordination of the carbonyl oxygen and the phenolic oxygen of the Schiff base ligands, The coordination number of tin atom is 6.
Resumo:
Half-sandwich nitrosyl complexes Cp*M(NO)I-2 (M = Mo, or W) react with dithiocarbamates (NaS2CNMe2 and NaS2CNEt2) in THF to form of complexes: Cp*Mo(NO)I (S2CNMe2) (1), Cp*Mo(NO)I(S2CNEt2) (2), Cp*W(NO)I(S2CNMe2) (3) and Cp*W(NO)I(S2CNEt2) (4) in high yields. Treatments of Cp*M(NO)I-2 (M = Mo, W) or [CpMo(NO)I-2](2) with phosphinodithioate (NaS2PMe2) and phosphorodithioate [(NH4)S2P(OMe)(2)] result in complexes: Cp*Mo(NO)I(S2PMe2) (5a), CpMo(NO)I (S2PMe2) (5b), Cp*Mo(NO)(S2PMe2)(2) (6a), CpMo (NO) (S2PMe2)(2) (6b) and Cp*Mo(NO)I[S2P(OMe)(2)] (7), Cp*W(NO)I(S2PMe2) (8), Cp*W(NO) I[S2P(OMe)](2) (9). Treatment of (5a) and (5b) with an excess of NaS2PMe2 gives (6a) and (6b). The complexes have been characterized by their elemental analyses, i.r., H-1, C-13-n.m.r. and by EI-MS spectrometry.