943 resultados para IMMOBILIZING ENZYME
Resumo:
Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.
Resumo:
For their biocompatibility and potential bionanoelectronic applications, integration of carbon nanotubes (CNTs) with biomolecules such as redox enzyme is highly anticipated. Therein, CNTs are expected to act not only as an electron transfer promoter, but also as immobilizing substrate for biomolecules. In this report, a novel method for immobilization of biomolecules on CNTs was proposed based on ionic interaction, which is of universality and widespread use in biological system. As illustrated, glucose oxidase (GOD) and single-walled carbon nanotubes (SWNTs) were integrated into a unitary bionanocomposite by means of ionic liquid-like unit on functionalized SWNTs. The resulted bionanocomposite illustrated better redox response of immobilized GOD in comparison of that prepared by weak physical absorption without ionic interaction. As a potential application of concept, the electrochemical detection of glucose was exemplified based on this novel bionanocomposite.
Resumo:
For the first time horseradish peroxidase (HRP) immobilized on the surface of active carbon powder modified at the surface of a glassy carbon electrode has been shown to undergo a direct quasi-reversible electrochemical reaction. Its formal potential, E-o/, is -0.363 V in phosphate buffer solution (pH 6.8) at a scan rate of 100 mV/s and is almost independent of the scan rate in the range of 50-700 mV/s. The dependence of E-o/ on the pH of the buffer solution indicated that the conversion of HRP-Fe(III)/HRP-Fe(II) is a one-electron-transfer reaction process coupled with one-proton-transfer. The experimental results also demonstrated that the immobilized HRP retained its bioelectrocatalytic activity to the reduction of H2O2. Furthermore, the HRP adsorbed oil the surface of the active carbon powder can be stored at 4 degreesC for several months without any loss of the enzyme activity. The method presented for immobilizing HRP can be easily extended to immobilize and obtain the direct electrochemistry of other enzymes.
Resumo:
Improvement of the sensitivity of electrochemical sandwich enzyme immunoassay has been achieved by electrodepositing redox polymer on screen-printed carbon electrode surface, on which the sandwich complex was formed.
Resumo:
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bPY)(3)(2+) and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)(3)(2+) by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 x 10(-6) M for alcohol (S/N = 3) with a linear range from 2.79 x 10(-5) to 5.78 x 10(-2) M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.
Resumo:
A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H2O2 was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H2O2 without electron mediator or promoter, at a potential of +0.10 V versus Ag \ AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N = 3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.
Resumo:
A flow injection amperometric immunoassay system based on the use of screen-printed carbon electrode for the detection of mouse IgG was developed. An immunoelectrode strip, on which an immunosorbent layer and screen-printed carbon electrode were integrated, and a proposed flow cell have been fabricated. The characterization of the flow immunoassay system and parameters affecting the performance of the immunoassay system were studied and optimized. Amperometric detection at 0.0 V (versus Ag/AgCl) resulted in a linear detection range of 30-700 ng ml(-1), with a detection limit of 3 ng ml(-1). The signal variation among electrode strips prepared from variant batch did not exceed 8.5% (n = 7) by measuring 0.5 mug ml(-1) antigen standard solution.
Resumo:
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
Resumo:
An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.