993 resultados para Hydrogen incorporation
Resumo:
Proton second moment (M2) and spin-lattice relaxation time (T1) of Ammonium Hydrogen Bischloroacetate (ABCA) have been measured in the range 77-350 K. A value of 6.5 G2 has been observed for the second moment at room temperature, which is typical of NH4+ reorientation and also a second moment transition in the range 170-145 K indicates the freezing of NH4+ motion. The NMR signal disappears dicontinuously at 128 K. Proton spin-lattice relaxation time (T1) Vs temperature, yielded only one sharp miniumum of 1.9 msec which is again typical of NH4+ reorientation. A slope change at 250 K is also observed, prbably due to CH2 motion. Further, the FID signal disappears at 128 K. Thus the Tc appears to be 128 K (of two reported values 120 K and 128 K). Activation energies have been calculated and the mechanism of the phase transition is discussed.
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
A perturbation treatment was developed for the comparative study of the abstraction of hydrogen from methane by formaldehyde and thioformaldehyde in their nπ* and ππ* states. Both in-plane and perpendicularplane reactions are considered. Results are qualitative but reveal clearly the prominent distinguishing features of these two photochemical processes in agreement with the experimental observations.
Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.
Resumo:
Intramolecularly hydrogen bonded conformations of (Aib-Pro)n sequences have been analysed theoretically. Both 4-1 (C10 and 3-1 (C7 hydrogen bonded regular structures are shown to be stereochemically feasible. Conformational energies for the helical structures have been estimated using classical potential energy methods. Both C10 and C7 conformations have very similar energies. Pyrrolidine ring puckering has a pronounced effect on the energies, and only Cv-endo puckered Pro residues can be accommodated. The theoretical calculations using spectroscopic data suggest that the recently proposed novel 310 helical conformation for benzyloxycarbonyl(Aib-Pro)4-methyl ester is in solution, is indeed energetically and stereochemically favourable.
Resumo:
The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.
Resumo:
The electronic absorption and i.r. spectroscopic studies are reported for the hydrogen bonding systems involving alcohol and various ketones. It is shown that the hydrogen bonding abilities of ketones are determined by the extent of delocalization of the lone pair electrons in their non-bonding molecular orbitals. Evidence for the formation of very weak intermolecular hydrogen bonds between alcohol and the π-electron part of the dicarbonyls has also been presented from the i.r. studies in the 3400–3700 cm−1 region.
Resumo:
Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.
Resumo:
Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy (MRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400-2498 nm) was used as well as specific spectral ranges within the full spectral range, i.e., visible (400-750 nm), shortwave (800-1100 nm) and near-infrared (NIR) (1100-2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient of determination (R-2) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R-2 = 0.824 with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best model (NIR spectra) produced a R-2 = 0.847 and standard error of calibration (SEC) = 0.050% and a R-2 = 0.829 and SEP = 0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific wavelengths 2034 and 2458 nm were of interest, with the former associated with C=O carbonyl stretch and the latter associated with C-N-C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.
Resumo:
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.The ISME Journal advance online publication, 13 March 2014; doi:10.1038/ismej.2014.25.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.
Resumo:
Sea water electrolysis is one of the promising ways to produce hydrogen since it is available in plentiful supply on the earth. However, in sea water electrolysis toxic chlorine evolution is the preferred reaction over oxygen evolution at the anode. In this work, research has been focused on the development of electrode materials with a high selectivity for oxygen evolution over chlorine evolution. Selective oxidation in sea water electrolysis has been demonstrated by using a cation-selective polymer. We have used a perm-selective membrane (Nafion®), which electrostatically repels chloride ions (Cl−) to the electrode surface and thereby enhances oxygen evolution at the anode. The efficiency and behaviour of the electrode have been characterized by means of anode current efficiency and polarization studies. The surface morphology of the electrode has been characterized by using a scanning electron microscope (SEM). The results suggest that nearly 100% oxygen evolution efficiency could be achieved when using an IrO2/Ti electrode surface-modified by a perm-selective polymer.