969 resultados para Homologous recombinational repair
Resumo:
OBJECTIVE: To assess the outcome of patients with ruptured descending thoracic and thoracoabdominal aortic aneurysms undergoing emergency repair, in comparison to elective surgery for chronic lesions. METHODS: A prospective study of 100 consecutive patients operated upon the descending aorta (1-8 segments) using proximal unloading and distal protection with partial cardiopulmonary bypass, heparin surface-coated perfusion equipment and low systemic heparinization (loading dose 100 IU/kg, activated coagulation time > 180 s), staged cross-clamping, sealed grafts and graft inclusion. RESULTS: Arteriosclerotic lesions were present in 53/100 patients (53%) for all, 30/53 (56%) for chronic, and 21/33 (63%) for ruptured, aneurysms (NS). Dissecting lesions were found in 38/100 patients (38%) for all, 20/53 (38%) for chronic, and 8/33 (24%) for ruptured aneurysms (NS). Preoperative hematocrit was 38 +/- 6% for all, 40 +/- 5% for chronic, and 33 +/- 5% for ruptured aneurysmal patients (P < 0.001 ruptured versus chronic). The extent of aortic repair (1-8 segments) was 3.3 +/- 1.6 for all, 3.5 +/- 1.5 for chronic, and 3.2 +/- 1.4 for ruptured, aneurysms (NS). Transdiaphragmatic repair was performed in 51/100 (51%) of all, 28/53 (53%) of chronic, and 17/33 (51%) of ruptured aneurysms (NS). Aortic cross-clamp time was 38 +/- 21 min for all, 39 +/- 24 min for chronic, and 38 +/- 17 min for ruptured, aneurysmal patients (NS). The amount of red cells washed and autotransfused was 2792 +/- 2239 ml in all, 3143 +/- 2531 ml in chronic, and 2074 +/- 1350 ml in ruptured, aneurysmal patients (P < 0.025). The amount of packed red cells required was 2181 +/- 1830 ml for all, 1736 +/- 1333 ml for chronic, and 2947 +/- 2395 ml for ruptured aneurysmal patients (P < 0.010). Thirty-day mortality was 9/100 (9%) for all, 3/53 (6%) for chronic, and 5/33 (15%) for ruptured aneurysmal patients (NS). Parapareses/plegias occurred in 9/100 (9%) of all, 6/53 (11%) of chronic, and 3/33 (9%) of ruptured, aneurysmal patients (NS). Stepwise regression analysis identified aortic cross-clamp time as a predictor of early mortality (P = 0.002) and parapareses and paraplegias (P = 0.001). Age (P = 0.001), extent of repair (P = 0.008) and preoperative hematocrit (P = 0.001) were predictors for homologous transfusion requirements. CONCLUSION: Emergency repair of ruptured descending thoracic and thoracoabdominal aortic aneurysms can be achieved with acceptable results.
Resumo:
Fibrin sealing has recently evolved as a new technique for mesh fixation in endoscopic inguinal hernia repair. A comprehensive Medline search was carried out evaluating fibrin sealant for mesh fixation, and finally 12 studies were included (3 randomized trials, 3 nonrandomized trials, and 6 case series). The trials were assessed for operative time, seroma formation, recovery time, recurrence rate, and acute and chronic pain.There was a trend toward decreased operative times for fibrin sealing compared with mechanical stapling; however, the results for seroma formation remained contradictory. The most important finding was the reduced postoperative pain. Recovery times were lower after fibrin sealing and the recurrence rates showed no differences.Fibrin sealing for mesh fixation in the endoscopic inguinal hernia surgery is a promising alternative to mechanical stapling, which can be safely applied. As the overall quality of published data remains poor, further well-designed studies are needed until fibrin sealing can replace mechanical stapling as a new standard for mesh fixation.
Resumo:
The process of repairing intestinal vascular lesions induced by schistosomiasis in mice was studied before and after curative chemotherapy, by means of histopathology coupled with injections of the mesenteric veins with India ink or plastic, in this case followed by corrosion in strong acid. The granulomas were avascular, mainly formed while within blood vessels, and were associated with distortion of the intestinal vasculature in their proximity, represented by tortuosities, focal dilatation, narrowing, and anastomosis of the mucosal and submucosal veins. Two to four months after cure of schistosomiasis involuting granulomas were seen to be slowly vascularized, a process going from the periphery toward the center of the granulomas. No intravascular granulomas were seen four months after treatment. The previously distorted mucosal and submucosal veins gradually regained their normal appearance, only a slight tortuosity remaining.
Resumo:
Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.
Resumo:
In principle, we should be glad that Eric Kmiec and his colleagues published in Science's STKE (1) a detailed experimental protocol of their gene repair method (2, 3). However, a careful reading of their contribution raises more doubts about the method. The research published in Science five years ago by Kmiec and his colleagues was said to demonstrate that chimeric RNA-DNA oligonucleotides could correct the mutation responsible for sickle cell anemia with 50% efficiency (4). Such a remarkable result prompted many laboratories to attempt to replicate the research or utilize the method on their own systems. However, if the method worked at all, which it rarely did, the achieved efficiency was usually lower by several orders of magnitude. Now, in the Science's STKE protocol, we are given crucial information about the method and why it is so important to utilize these expensive chimeric RNA-DNA constructs. In the introduction we are told that the RNA-DNA duplex is more stable than a DNA-DNA duplex and so extends the half-life of the complexes formed between the targeted DNA and the chimeric RNA-DNA oligonucleotides. This logical explanation, however, conflicts with the statement in the section entitled "Transfection with Oligonucleotides and Plasmid DNA" that Kmiec and colleagues have recently demonstrated that classical single-stranded DNA oligonucleotides with a few protective phosphothioate linkages have a "gene repair conversion frequency rivaling that of the RNA/DNA chimera". Indeed, the research cited for that result actually states that single-stranded DNA oligonucleotides are in fact several-fold more efficient (3.7-fold) than the RNA-DNA chimeric constructs (5). If that is the case, it raises the question of why Kmiec and colleagues emphasize the importance of the RNA in their original chimeric constructs. Their own new results show that modified single-stranded DNA oligonucleotides are more effective than the expensive RNA-DNA hybrids. Moreover, the current efficiency of the gene repair by RNA-DNA hybrids, according to Kmiec and colleagues in their recent paper is only 4×10-4 even after several hours of pre-selection permitting multiplification of bacterial cells with the corrected plasmid (5). This efficiency is much lower than the 50% value reported five years ago, but is assuredly much closer to the reality.
Resumo:
BACKGROUND: Large intrathoracic airway defects may be closed using a pedicled latissimus dorsi (LD) flap, with rewarding results. This study addresses the question of whether this holds true for extrathoracic non-circumferential tracheal defects. METHODS: A cervical segment of the trachea of 4 x 1 cm was resected in 9 white male pigs. The defect was stented with a silicone stent for 3 months and closed either by an LD flap alone (group a, n = 3), an LD flap with an attached rib segment covered by pleura (group b, n = 3), or an LD flap reinforced by a perforated polylactide (MacroPore) plate (group c, n = 3). The trachea was assessed by rigid endoscopy at 3 and 4 months and histologically at 4 months postoperatively. RESULTS: The degree of stenosis at the level of the reconstruction at 4 months was 25, 50 and 75% in group a, 15, 50 and 60% in group b, and 20, 95 and 95% in group c, respectively. The percentage of the defect covered by columnar epithelium was 100% in all animals of group a, 60, 100 and 100% in group b, and 10, 0 and 0% in group c. Resorption of the rib was seen in all animals of group b and obstructive inflammatory polyps were found in 2 animals of group c. CONCLUSION: Pedicled LD flaps provided less satisfactory results for closure of large non-circumferential extrathoracic airway defects than observed after intrathoracic reconstruction. A pedicled rib segment added to the LD flap did not improve the results obtained from LD flap repair alone, and an embedded MacroPore prosthesis may result in severe airway stenosis due to plate migration and intense inflammatory reaction protruding into the tracheal lumen.
Resumo:
OBJECTIVES: The purpose of this study was to assess short- and mid-term results of in-situ revascularisation (ISR) using silver-coated Dacron prostheses and bowel repair for management of secondary aorto-enteric fistulae (SAEF). DESIGN: Single-centre retrospective chart review. MATERIAL AND METHODS: This study includes all the patients treated by ISR using silver-coated Dacron for SAEF between 2006 and 2010. Primary end points were mortality and survival rates. Secondary end points were reinfection-free survival and secondary patency rates. RESULTS: Eighteen male patients with SAEF with a median age of 64 years were operated by ISR using silver-coated Dacron during the study period without operative death. The 30-day mortality was 22% and the in-hospital mortality rate was 39%. Indeed, during hospitalisation, a duodenal leak was observed in four patients including three who died. Four others patients died due to multi-system organ failure. Median follow-up was 16 months (range 1-66). The survival rate at 12 months was 55%. One duodenal leak was observed leading to death. The reinfection-free survival and the secondary patency rates at 12 months were 60% and 89%, respectively. CONCLUSION: In-situ revascularisation with silver-coated Dacron provides acceptable results in terms of mortality. This treatment may be useful for simple vascular reconstruction and allow greater attention to bowel repair that is a determinant in short- and mid-term survival.
Resumo:
Peripheral nerve injuries with loss of nervous tissue are a significant clinical problem and are currently treated using autologous nerve transplants. To avoid the need for donor nerve, which results in additional morbidity such as loss of sensation and scarring, alternative bridging methods have been sought. Recently we showed that an artificial nerve conduit moulded from fibrin glue is biocompatible to nerve regeneration. In this present study, we have used the fibrin conduit or a nerve graft to bridge either a 10 mm or 20 mm sciatic nerve gap and analyzed the muscle recovery in adult rats after 16 weeks. The gastrocnemius muscle weights of the operated side were similar for both gap sizes when treated with nerve graft. In contrast, muscle weight was 48.32 ± 4.96% of the contra-lateral side for the 10 mm gap repaired with fibrin conduit but only 25.20 ± 2.50% for the 20 mm gap repaired with fibrin conduit. The morphology of the muscles in the nerve graft groups showed an intact, ordered structure, with the muscle fibers grouped in fascicles whereas the 20 mm nerve gap fibrin group had a more chaotic appearance. The mean area and diameter of fast type fibers in the 20 mm gap repaired with fibrin conduits were significantly (P<0.01) worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. Furthermore, the 10 mm gaps repaired with either nerve graft or fibrin conduit showed similar muscle fiber size. These results indicate that the fibrin conduit can effectively treat short nerve gaps but further modification such as the inclusion of regenerative cells may be required to attain the outcomes of nerve graft for long gaps.
Resumo:
Seven rhesus macaques were infected intradermally with 10(7) promastigotes of Leishmania (Leishmania) major. All monkeys developed a localized, ulcerative, self-healing nodular skin lesion at the site of inoculation of the parasite. Non-specific chronic inflammation and/or tuberculoid-type granulomatous reaction were the main histopathological manifestations of the disease. Serum Leishmania-specific antibodies (IgG and IgG1) were detected by ELISA in all infected animals; immunoblot analyses indicated that numerous antigens were recognized. A very high degree of variability was observed in the parasite-specific cell-mediated immune responses [as detected by measuring delayed-type hypersensitivity (DTH) reaction, in vitro lymphocyte proliferation, and gamma interferon (IFN-gamma) production] for individuals over time post challenge. From all the recovered monkeys (which showed resolution of the lesions after 11 weeks of infection), 57.2% (4/7) and 28.6% (2/7) animals remained susceptible to secondary and tertiary infections, respectively, but the disease severity was altered (i.e. lesion size was smaller and healed faster than in the primary infection). The remaining monkeys exhibited complete resistance (i.e. no lesion) to each rechallenge. Despite the inability to consistently detect correlates of cell-mediated immunity to Leishmania or correlation between resistance to challenge and DTH, lymphocyte transformation or IFN-gamma production, partial or complete acquired resistance was conferred by experimental infection. This primate model should be useful for measuring vaccine effectiveness against the human disease.
Resumo:
Melanoma-associated genes (MAGEs) encode tumor-specific antigens that can be recognized by CD8+ cytotoxic T lymphocytes. To investigate the interaction of the HLA-A1-restricted MAGE-1 peptide 161-169 (EADPT-GHSY) with HLA class I molecules, photoreactive derivatives were prepared by single amino acid substitution with N beta-[iodo-4-azidosalicyloyl]-L-2,3-diaminopropionic acid. These derivatives were tested for their ability to bind to, and to photoaffinity-label, HLA-A1 on C1R.A1 cells. Only the derivatives containing the photoreactive amino acid in position 1 or 7 fulfilled both criteria. Testing the former derivative on 14 lymphoid cell lines expressing over 44 different HLA class I molecules indicated that it efficiently photoaffinity-labeled not only HLA-A1, but possibility also HLA-A29 and HLA-B44. MAGE peptide binding by HLA-A29 and HLA-B44 was confirmed by photoaffinity labeling with photoreactive MAGE-3 peptide derivatives on C1R.A29 and C1R.B44 cells, respectively. The different photoaffinity labeling systems were used to access the ability of the homologous peptides derived from MAGE-1, -2, -3, -4a, -4b, -6, and -12 to bind to HLA-A1, HLA-A29, and HLA-B44. All but the MAGE-2 and MAGE-12 nonapeptides efficiently inhibited photoaffinity labeling of HLA-A1, which is in agreement with the known HLA-A1 peptide-binding motif (acidic residue in P3 and C-terminal tyrosine). In contrast, photoaffinity labeling of HLA-A29 was efficiently inhibited by these as well as by the MAGE-3 and MAGE-6 nonapeptides. Finally, the HLA-B44 photoaffinity labeling, unlike the HLA-A1 and HLA-A29 labeling, was inhibited more efficiently by the corresponding MAGE decapeptides, which is consistent with the reported HLA-B44 peptide-binding motif (glutamic acid in P2, and C-terminal tyrosine or phenylalanine). The overlapping binding of homologous MAGE peptides by HLA-A1, A29, and B44 is based on different binding principles and may have implications for immunotherapy of MAGE-positive tumors.
Resumo:
In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.
Resumo:
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Resumo:
The constitutive ribosomal gene rp49 is frequently used as an endogenous control in Drosophila gene expression experiments. Using the degenerate primer PCR technique we have cloned a fragment homologous to this gene in Anopheles aquasalis Curry, a Neotropical vector of malaria. In addition, based on this first sequence, a new primer was designed, which allowed the isolation of fragments of rp49 in two other species, Aedes aegypti (Linnaeus) and Culex quinquefasciatus Say, suggesting that it could be used to clone fragments of this gene in a number of other mosquito species. Primers were also designed to specifically amplify rp49 cDNA fragments in An. aquasalis and Ae. aegypti, showing that rp49 could be used as a good constitutive control in gene expression studies of these and other vectorially important mosquito species.
Resumo:
This study aims to investigate the importance of the serum factors present in the plasma of resistant Biomphalaria tenagophila snails, when transferred to susceptible conspecific. Susceptible B. tenagophila (CF) received plasma from resistant B. tenagophila (Taim), and both were later infected with Schistosoma mansoni. We noticed that the plasma transfer showed an increase on the resistance of susceptible snails of about 86% when compared to the non-immunized group (p < 0.001).