979 resultados para Harp with string orchestra


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entropy of the states associated to the solutions of the equations of motion of the bosonic open string with combinations of Neumann and Dirichlet boundary conditions is given. Also, the entropy of the string in the states \A(i)] = alpha(-1)(i)\0] and \phi(a)]= alpha(-1)(a)\0] that describe the massless fields on the world-volume of the Dp-brane is computed. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the N-fold symmetric product (SX)-X-N of X ((SX)-X-N=X-N/S-N, where S-N is the symmetric group of N elements) to the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion for the state counting reproduces the logarithmic correction to the black hole entropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS(3) x S-3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU' (2\2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the torsion constraints and show the consistency of equations of motion of four-dimensional Type II supergravity in superspace. with Type II sigma model. This is achieved by coupling the four-dimensional compactified Type II Berkovits' superstring to an N = 2 curved background and requiring that the sigma-model has superconformal invariance at tree-level. We compute this in a manifestly 4D N = 2 supersymmetric way. The constraints break the target conformal and SU(2) invariances and the dilaton will be a conformal, SU(2) x U(1) compensator. For Type II superstring in four dimensions, worldsheet supersymmetry requires two different compensators. One type is described by chiral and anti-chiral superfields. This compensator can be identified with a vector multiplet. The other Type II compensator is described by twist-chiral and twist-anti-chiral superfields and can be identified with a tensor hypermultiplet. Also, the superconformal invariance at tree-level selects a particular gauge, where the matter is fixed, but not the compensators. After imposing the reality conditions, we show that the Type II sigma model at tree-level is consistent with the equations of motion for Type II supergravity in the string gauge. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, theta) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the d = 10 superstring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.