991 resultados para Hadron physics
Resumo:
QCD factorization in the Bjorken limit allows to separate the long-distance physics from the hard subprocess. At leading twist, only one parton in each hadron is coherent with the hard subprocess. Higher twist effects increase as one of the active partons carries most of the longitudinal momentum of the hadron, x -> 1. In the Drell-Yan process \pi N -> \mu^- mu^+ + X, the polarization of the virtual photon is observed to change to longitudinal when the photon carries x_F > 0.6 of the pion. I define and study the Berger-Brodsky limit of Q^2 -> \infty with Q^2(1-x) fixed. A new kind of factorization holds in the Drell-Yan process in this limit, in which both pion valence quarks are coherent with the hard subprocess, the virtual photon is longitudinal rather than transverse, and the cross section is proportional to a multiparton distribution. Generalized parton distributions contain information on the longitudinal momentum and transverse position densities of partons in a hadron. Transverse charge densities are Fourier transforms of the electromagnetic form factors. I discuss the application of these methods to the QED electron, studying the form factors, charge densities and spin distributions of the leading order |e\gamma> Fock state in impact parameter and longitudinal momentum space. I show how the transverse shape of any virtual photon induced process, \gamma^*(q)+i -> f, may be measured. Qualitative arguments concerning the size of such transitions have been previously made in the literature, but without a precise analysis. Properly defined, the amplitudes and the cross section in impact parameter space provide information on the transverse shape of the transition process.
Resumo:
We point out possibilities for exotic physics in barium bismuthates, from a detailed study of the negative-U, extended-Hubbard model proposed for these systems. We emphasize the different consequences of electronic and phononic mechanisms for negative U. We show that, for an electronic mechanism, the semiconducting phases must be unique, with their transport properties dominated by charge ± 2e Cooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport.
Resumo:
In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.
Resumo:
Solid state physics developed in India later than elsewhere in the world. What is particularly disconcerting is the poor state of experimental solid state physics today. A new thrust and better funding are essential if this field has to thrive in the country.
Resumo:
The physics of the solid state has grown into that of condensed matter and is now expanding into the study of a bewildering variety of complex systems. After a brief survey of this progression, I enquire into the health of solid state physics; many signs of vitality and growth are found. The Indian scene in this field is briefly sketched, and some suggestions are offered on how to make it more lively,
Resumo:
This paper contains a review of the physical properties of the undoped and alkali-doped C60 materials, including their crystal structure, electronic, optical and vibrational properties and the effect of pressure on the crystal and electronic structure. The mechanisms of superconductivity in alkali-doped C60 in terms of phonon mediated electron pairing vis-a-vis electronic interaction effects are discussed.
Resumo:
We present the report of the B physics working group of the Workshop on High Energy Physics Phenomenology (WHEPP-XI), held at the Physical Research Laboratory, Ahmedabad, in January 2010.
Resumo:
Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.
Resumo:
The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.