216 resultados para HOA microphone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R-2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA(2)-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions. Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R-2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA(2)-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the impact of atmospheric black carbon (BC) containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we demonstrate for the first time the capabilities of the Aerodyne Soot-Particle Aerosol Mass Spectrometer equipped with a light scattering module (LS-SP-AMS) to examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto). K-means clustering analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant cluster is dominated by rBC mass spectral signals (C+1 to C+5) while the organic signals fall into a few major clusters, identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A nearly external mixing is observed with small BC particles only thinly coated by HOA ( 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic clusters were not significantly associated with BC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with low to mid-range aerodynamic diameter (dva). The similar temporal profiles and mass spectral features of the organic clusters and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol dataset validate the conventional interpretation of the PMF results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. nowhere landscape, for clarinets, trombones, percussion, violins, and electronics

nowhere landscape is an eighty-minute work for nine performers, composed of acoustic and electronic sounds. Its fifteen movements invoke a variety of listening strategies, using slow change, stasis, layering, coincidence, and silence to draw attention to the sonic effects of the environment—inside the concert hall as well as the world outside of it. The work incorporates a unique stage set-up: the audience sits in close proximity to the instruments, facing in one of four different directions, while the musicians play from a number of constantly-shifting locations, including in front of, next to, and behind the audience.

Much of nowhere landscape’s material is derived from a collection of field recordings

made by the composer during a road trip from Springfield, MA to Douglas, WY along US- 20, a cross-country route made effectively obsolete by the completion of I-90 in the mid- 20th century. In an homage to artist Ed Ruscha’s 1963 book Twentysix Gasoline Stations, the composer made twenty-six recordings at gas stations along US-20. Many of the movements of nowhere landscape examine the musical potential of these captured soundscapes: familiar and anonymous, yet filled with poignancy and poetic possibility.

2. “The Map and the Territory: Documenting David Dunn’s Sky Drift”

In 1977, David Dunn recruited twenty-six musicians to play his work Sky Drift in the

Anza-Borrego Desert in Southern California. This outdoor performance was documented with photos and recorded with four stationary microphones to tape. A year later, Dunn presented the work in New York City as a “performance/documentation,” playing back the audio recording and projecting slides. In this paper I examine the consequences of this kind of act: what does it mean for a recording of an outdoor work to be shared at an indoor concert event? Can such a complex and interactive experience be successfully flattened into some kind of re-playable documentation? What can a recording capture and what must it exclude?

This paper engages with these questions as they relate to David Dunn’s Sky Drift and to similar works by Karlheinz Stockhausen and John Luther Adams. These case-studies demonstrate different solutions to the difficulty of documenting outdoor performances. Because this music is often heard from a variety of equally-valid perspectives—and because any single microphone only captures sound from one of these perspectives—the physical set-up of these kind of pieces complicate what it means to even “hear the music” at all. To this end, I discuss issues around the “work itself” and “aura” as well as “transparency” and “liveness” in recorded sound, bringing in thoughts and ideas from Walter Benjamin, Howard Becker, Joshua Glasgow, and others. In addition, the artist Robert Irwin and the composer Barry Truax have written about the conceptual distinctions between “the work” and “not- the-work”; these distinctions are complicated by documentation and recording. Without the context, the being-there, the music is stripped of much of its ability to communicate meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reassembled, Slightly Askew is an autobiographical, immersive audio-based artwork based on Shannon Sickels’ experience of falling critically ill with a rare brain infection and her journey of rehabilitation with an acquired brain injury. Audience members experience Reassembled individually, listening to the audio via headphones while lying on a bed. The piece makes use of binaural microphone technology and spatial sound design techniques, causing listeners to feel they are inside Shannon’s head, viscerally experiencing her descent into coma, brain surgeries, early days in the hospital, and re-integration into the world with a hidden disability. It is a new kind of storytelling, never done before about this topic, that places the listener safely in the first-person perspective with the aim of increasing empathy and understanding. Reassembled… was made through a 5-year collaboration with an interdisciplinary team of artists led by Shannon Sickels (writer & performer), Paul Stapleton (composer & sound designer), Anna Newell (director), Hanna Slattne (dramaturgy), Stevie Prickett (choreography), and Shannon’s consultant neurosurgeon and head injury nurse. It’s development and production has been made possible with the support of a Wellcome Trust Arts Award, the Arts Council NI, Sonic Arts Research Centre, Belfast's Metropolitan Arts Centre, and grants from the Arts & Disability Award Ireland scheme. In its 2015 premiere year, Reassembled had 99 shows across Northern Ireland, including at the Cathedral Quarter Arts Festival (the MAC, Belfast) and BOUNCE Arts & Disability Forum Festival (Lyric Theatre, Belfast). It was awarded 5 stars in the Stage, a Hospital Club h100 Theatre & Performance Award, and been shared at medical conferences and trainings across the UK. It continues to be presented in diverse artistic and educational contexts, including as part of A Nation’s Theatre Festival in 2016 at Battersea Arts Centre in London where it was given 4 star reviews in the Guardian, Time Out London and the Evening Standard. "A real-life ordeal, captured by a daring, disorientating artistic collaboration, which works brilliantly on so many levels…It should be available on prescription.” — The Stage ★★★★★ www.reassembled.co.uk Audio clips and documentary footage available here: http://www.paulstapleton.net/portfolio/reassembled-slightly-askew

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While humans can easily segregate and track a speaker's voice in a loud noisy environment, most modern speech recognition systems still perform poorly in loud background noise. The computational principles behind auditory source segregation in humans is not yet fully understood. In this dissertation, we develop a computational model for source segregation inspired by auditory processing in the brain. To support the key principles behind the computational model, we conduct a series of electro-encephalography experiments using both simple tone-based stimuli and more natural speech stimulus. Most source segregation algorithms utilize some form of prior information about the target speaker or use more than one simultaneous recording of the noisy speech mixtures. Other methods develop models on the noise characteristics. Source segregation of simultaneous speech mixtures with a single microphone recording and no knowledge of the target speaker is still a challenge. Using the principle of temporal coherence, we develop a novel computational model that exploits the difference in the temporal evolution of features that belong to different sources to perform unsupervised monaural source segregation. While using no prior information about the target speaker, this method can gracefully incorporate knowledge about the target speaker to further enhance the segregation.Through a series of EEG experiments we collect neurological evidence to support the principle behind the model. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of the remarkable perceptual ability of humans to segregate acoustic sources, and of its psychophysical manifestations in navigating complex sensory environments. Results from EEG experiments provide further insights into the assumptions behind the model and provide motivation for future single unit studies that can provide more direct evidence for the principle of temporal coherence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Long-term exposure to infrasound and low frequency noise (ILFN <500 Hz, including infrasound) can lead to the development of vibroacoustic disease (VAD). VAD is a systemic pathology characterized by the abnormal growth of extracellular matrices in the absence of inflammatory processes, namely of collagen and elastin, both of which are abundant in the basement membrane zone of the vocal folds. ILFN-exposed workers include pilots, cabin crewmembers, restaurant workers, ship machinists and, in previous studies, even though they did not present vocal symptoms, ILFN-exposed workers had significant different voice acoustic patterns (perturbation and temporal measures) when compared with normative population. Study Aims: The present study investigates the effects of age and years of occupational ILFN-exposure on voice acoustic parameters of 37 cabin crewmembers: 12 males and 25 females. Specifically, the goals of this study are to: 1) Verify if acoustic parameters change over the age and years of ILFN-exposure and 2) Determine if there is any interaction between age and years of ILFNexposure on voice acoustic parameters of crewmembers. Materials and Methods: Spoken phonatory tasks were recorded with a C420III PP AKG head-worn microphone and a DA-P1 Tascam DAT. Acoustic analyses were performed using KayPENTAX Computer Speech Lab and Multi-Dimensional Voice Program. Acoustic parameters included speaking fundamental frequency, perturbation measures (jitter, shimmer and harmonicto- noise ratio), temporal measures (maximum phonation time and s/z ratio) and voice tremor frequency. Results: One-way ANOVA analysis revealed that as the number of ILFN-exposure years increased male cabin crewmembers presented significant different shimmer values of /i/ as well as tremor frequency of /u/. Females presented significantly different jitter % of /i, a, O/ (p <0.05). Lastly, Two-way ANOVA analysis revealed that for females, there was a significant interaction between age and occupational ILFN-exposure for voice acoustic parameters, namely for jitter’s mean for /a, O/ and shimmer’s (%) mean for /a, i/ (p <0.05). Discussion and Conclusion: These perturbation measure patterns may be indicative of histological changes within the vocal folds as a result of ILFN-exposure. The results of this study suggest that voice acoustic analysis may be an important tool for confirming ILFN-induced health effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Vibroacoustic disease (VAD) is a systematic pathology characterized by the abnormal growth of extra-cellular matrices in the absence of infl ammatory processes, namely collagen and elastin, both of which are abundant in the basement membrane zone of the vocal folds. VAD can develop due to long-term exposure to infrasound and low-frequency noise (ILFN, <500 Hz). Mendes et al. (2006, 2008 and 2012) revealed that ILFN-exposed males and females presented an increased fundamental frequency (F0), decreased jitter %, and reduced maximum phonation frequency range, when compared with normative data. Temporal measures of maximum phonation time and S/Z ratio were generally reduced. Study Aims: Herein, the same voice acoustic parameters of 48 males, 36 airline pilots and 12 cabin crewmembers (age range 25-60 years) were studied, and the effects and interaction of age and years of ILFN exposure were investigated within those parameters. ILFN-exposure time (i.e. years of professional activity) ranged from 3.5 to 36 years. Materials and Methods: Spoken and sung phonatory tasks were recorded with a DA-P1 Tascam DAT and a C420III PP AKG head-worn microphone, positioned at 3 cm from the mouth. Acoustic analyses were performed using KayPENTAX Computer Speech Lab and Multi-Dimensional Voice Program. Results: Results revealed that even though pilots and cabin crewmembers were exposed to occupational environments with distinct (ILFN-rich) acoustical frequency distributions and sound pressure levels, differences in the vocal acoustic parameters were not evident. Analyzing data from both professional groups (N = 48) revealed that F0 increased signifi cantly with the number of years of professional activity. Conclusion: These results strongly suggest that the number of years of professional activity (i.e. total ILFN exposure time) had a signifi cant effect on F0. Furthermore, they may refl ect the histological changes specifi cally observed on the vocal folds of ILFN-exposed professionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los niños y las niñas con disfunciones neurológicas tienen frecuentemente disfagia, condición que les ocasiona infecciones respiratorias a repetición, desnutrición, mala calidad de vida; su oportuno diagnóstico permite decidir sobre la mejor intervención. La videofluoroscopia y de videoendoscopia son técnicas diagnósticas invasivas, costosas y por lo tanto difíciles de hacerlas, lo que ocasiona retardo en el diagnóstico e intervención. Hoy en día existen nuevas tecnologías médicas no invasivas que pueden ser muy eficaces, una de ellas es la auscultación cervical que escucha los sonidos de la deglución mediante un estetoscopio u otro dispositivo de medición como la colocación de un micrófono o un acelerómetro en la superficie del cuello. Este método tiene como principio que los sonidos y/o movimientos biológicos normales de la deglución son diferentes de los anormales. En este artículo se presenta una revisión de la pertinencia social del diagnóstico de la disfagia, de las aplicaciones clínicas de la auscultación cervical y los dispositivos usados para realizarla, como una base para establecer su potencial de uso para la detección de disfagia en niños con problemas de neurodesarrollo. Estas orientaciones teóricas permiten al médico tener actuaciones más acertadas en el diagnóstico integral de niños y niñas con disfunción neurológica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In recent years new models of intraocular lenses are appearing on the market to reduce requirements for additional optical correction. The purpose of this study is to assess visual outcomes following bilateral cataract surgery and the implant of a FineVision® trifocal intraocular lens (IOL). Methods Prospective, nonrandomized, observational study. Vision was assessed in 44 eyes of 22 patients (mean age 68.4 ± 5.5 years) before and 3 months after surgery. Aberrations were determined using the Topcon KR-1 W wave-front analyzer. LogMAR visual acuity was measured at distance (corrected distance visual acuity, CDVA 4 m), intermediate (distance corrected intermediate visual acuity, DCIVA 60 cm) and near (distance corrected near visual acuity, DCNVA 40 cm). The Pelli-Robson letter chart and the CSV-1000 test were used to estimate contrast sensitivity (CS). Defocus curve testing was performed in photopic and mesopic conditions. Adverse photic phenomena were assessed using the Halo v1.0 program. Results Mean aberration values for a mesopic pupil diameter were: total HOA RMS: 0.41 ± 0.30 μm, coma: 0.32 ± 0.22 μm and spherical aberration: 0.21 ± 0.20 μm. Binocular logMAR measurements were: CDVA −0.05 ± 0.05, DCIVA 0.15 ± 0.10, and DCNVA 0.06 ± 0.10. Mean Pelli-Robson CS was 1.40 ± 0.14 log units. Mean CSV100 CS for the 4 frequencies examined (A: 3 cycles/degree (cpd), B: 6 cpd, C: 12 cpd, D: 18 cpd) were 1.64 ± 0.14, 1.77 ± 0.18, 1.44 ± 0.24 and 0.98 ± 0.24 log units, respectively. Significant differences were observed in defocus curves for photopic and mesopic conditions (p < 0.0001). A mean disturbance index of 0.28 ± 0.22 was obtained. Conclusions Bilateral FineVision IOL implant achieved a full range of adequate vision, satisfactory contrast sensitivity, and a lack of significant adverse photic phenomena. Trial registration Eudract Clinical Trials Registry Number: 2014-003266-2.