985 resultados para HARD-PHOTON EMISSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation state and coordination of transition metal cations seems to be hard to assess when considering multiple cations, each one with different possible oxidation states. In fact, this is the case of the spineltype double oxides family. High resolution K beta X-ray fluorescence spectra were measured in Mn(2-x)V(1+4)O4 (x=0 and 1/3) spinels-type double oxides in order to determine the oxidation state and coordination of V and Mn cations. The relative intensity of radiative Auger effect KM2,3M4,5 to the total intensity and the integral absolute difference value were used as reference parameters for the characterization of Mn oxidation states. The coordination of Mn ions was inferred by the intensity of the K beta(5) line. In the case of V compounds, it was used as the intensity of the line K beta' relative to the total area of K beta region. The obtained results were further compared with X-ray absorption spectra analysis, showing good agreements regarding the oxidation state characterization. However, there were found some discrepancies in coordination, due to customary oversimplifications in the K beta(5) line origin. The obtained results might represent valuable and useful data for chemical scopes of characterizing spineltype oxides family. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

gamma Cas is the prototypical classical Be star and is recently best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around four XMM-Newton observations. The observational techniques included long baseline optical interferometry (LBOI) from two instruments at CHARA, photometry carried out by an automated photometric telescope and H alpha observations. Because gamma Cas is also known to be in a binary, we measured radial velocities from the H alpha line and redetermined its period as 203.55 +/- 0.20 days and its eccentricity as near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an system inclination angle near 45 degrees, and a larger radius than previously reported. In addition, the Be star began an "outburst" at the beginning of our campaign, made visible by a brightening and reddening of the disk during our campaign and beyond. Our analyses of the new high resolution spectra disclosed many attributes also found from spectra obtained in 2001 (Chandra) and 2004 (XMM-Newton). As well as a dominant hot (approximate to 14 keV) thermal component, the familiar attributes included: (i) a fluorescent feature of Fe K even stronger than observed at previous times; (ii) strong lines of N VII and Ne XI lines indicative of overabundances; and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that two absorption columns are required to fit the continuum. While the first one maintained its historical average of 1 x 10(21) cm(-2), the second was very large and doubled to 7.4 x 10(23) cm(-2) during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η1 ∼ 0.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seyfert galaxies are the closest active galactic nuclei. As such, we can use them to test the physical properties of the entire class of objects. To investigate their general properties, I took advantage of different methods of data analysis. In particular I used three different samples of objects, that, despite frequent overlaps, have been chosen to best tackle different topics: the heterogeneous BeppoS AX sample was thought to be optimized to test the average hard X-ray (E above 10 keV) properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to compare the properties of low-luminosity sources to the ones of higher luminosity and, thus, it was also used to test the emission mechanism models; finally, the XMM–Newton sample was extracted from the X-CfA sample so as to ensure a truly unbiased and well defined sample of objects to define the average properties of Seyfert galaxies. Taking advantage of the broad-band coverage of the BeppoS AX MECS and PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (~1.8), the high-energy cut-off (~290 keV), and the relative amount of cold reflection (~1.0). Moreover the unified scheme for active galactic nuclei was positively tested. The distribution of isotropic indicators used here (photon index, relative amount of reflection, high-energy cut-off and narrow FeK energy centroid) are similar in type I and type II objects while the absorbing column and the iron line equivalent width significantly differ between the two classes of sources with type II objects displaying larger absorbing columns. Taking advantage of the XMM–Newton and X–CfA samples I also deduced from measurements that 30 to 50% of type II Seyfert galaxies are Compton thick. Confirming previous results, the narrow FeK line is consistent, in Seyfert 2 galaxies, with being produced in the same matter responsible for the observed obscuration. These results support the basic picture of the unified model. Moreover, the presence of a X-ray Baldwin effect in type I sources has been measured using for the first time the 20-100 keV luminosity (EW proportional to L(20-100)^(−0.22±0.05)). This finding suggests that the torus covering factor may be a function of source luminosity, thereby suggesting a refinement of the baseline version of the unifed model itself. Using the BeppoSAX sample, it has been also recorded a possible correlation between the photon index and the amount of cold reflection in both type I and II sources. At a first glance this confirms the thermal Comptonization as the most likely origin of the high energy emission for the active galactic nuclei. This relation, in fact, naturally emerges supposing that the accretion disk penetrates, depending to the accretion rate, the central corona at different depths (Merloni et al. 2006): the higher accreting systems hosting disks down to the last stable orbit while the lower accreting systems hosting truncated disks. On the contrary, the study of the well defined X–C f A sample of Seyfert galaxies has proved that the intrinsic X-ray luminosity of nearby Seyfert galaxies can span values between 10^(38−43) erg s^−1, i.e. covering a huge range of accretion rates. The less efficient systems have been supposed to host ADAF systems without accretion disk. However, the study of the X–CfA sample has also proved the existence of correlations between optical emission lines and X-ray luminosity in the entire range of L_(X) covered by the sample. These relations are similar to the ones obtained if high-L objects are considered. Thus the emission mechanism must be similar in luminous and weak systems. A possible scenario to reconcile these somehow opposite indications is assuming that the ADAF and the two phase mechanism co-exist with different relative importance moving from low-to-high accretion systems (as suggested by the Gamma vs. R relation). The present data require that no abrupt transition between the two regimes is present. As mentioned above, the possible presence of an accretion disk has been tested using samples of nearby Seyfert galaxies. Here, to deeply investigate the flow patterns close to super-massive black-holes, three case study objects for which enough counts statistics is available have been analysed using deep X-ray observations taken with XMM–Newton. The obtained results have shown that the accretion flow can significantly differ between the objects when it is analyzed with the appropriate detail. For instance the accretion disk is well established down to the last stable orbit in a Kerr system for IRAS 13197-1627 where strong light bending effect have been measured. The accretion disk seems to be formed spiraling in the inner ~10-30 gravitational radii in NGC 3783 where time dependent and recursive modulation have been measured both in the continuum emission and in the broad emission line component. Finally, the accretion disk seems to be only weakly detectable in rk 509, with its weak broad emission line component. Finally, blueshifted resonant absorption lines have been detected in all three objects. This seems to demonstrate that, around super-massive black-holes, there is matter which is not confined in the accretion disk and moves along the line of sight with velocities as large as v~0.01-0.4c (whre c is the speed of light). Wether this matter forms winds or blobs is still matter of debate together with the assessment of the real statistical significance of the measured absorption lines. Nonetheless, if confirmed, these phenomena are of outstanding interest because they offer new potential probes for the dynamics of the innermost regions of accretion flows, to tackle the formation of ejecta/jets and to place constraints on the rate of kinetic energy injected by AGNs into the ISM and IGM. Future high energy missions (such as the planned Simbol-X and IXO) will likely allow an exciting step forward in our understanding of the flow dynamics around black holes and the formation of the highest velocity outflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was focused on the investigation of the linear optical properties of novel two photon absorbers for biomedical applications. Substituted imidazole and imidazopyridine derivatives, and organic dendrimers were studied as potential fluorophores for two photon bioimaging. The results obtained showed superior luminescence properties for sulphonamido imidazole derivatives compared to other substituted imidazoles. Imidazo[1,2-a]pyridines exhibited an important dependence on the substitution pattern of their luminescence properties. Substitution at imidazole ring led to a higher fluorescence yield than the substitution at the pyridine one. Bis-imidazo[1,2-a]pyridines of Donor-Acceptor-Donor type were examined. Bis-imidazo[1,2-a]pyridines dimerized at C3 position had better luminescence properties than those dimerized at C5, displaying high emission yields and important 2PA cross sections. Phosphazene-based dendrimers with fluorene branches and cationic charges on the periphery were also examined. Due to aggregation phenomena in polar solvents, the dendrimers registered a significant loss of luminescence with respect to fluorene chromophore model. An improved design of more rigid chromophores yields enhanced luminescence properties which, connected to large 2PA cross-sections, make this compounds valuable as fluorophores in bioimaging. The photophysical study of several ketocoumarine initiators, designed for the fabrication of small dimension prostheses by two photon polymerization (2PP) was carried out. The compounds showed low emission yields, indicative of a high population of the triplet excited state, which is the active state in producing the reactive species. Their efficiency in 2PP was proved by fabrication of microstructures and their biocompatibility was tested in the collaborator’s laboratory. In the frame of the 2PA photorelease of drugs, three fluorene-based dyads have been investigated. They were designed to release the gamma-aminobutyric acid via two photon induced electron transfer. The experimental data in polar solvents showed a fast electron transfer followed by an almost equally fast back electron transfer process, which indicate a poor optimization of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis work we will explore and discuss the properties of the gamma-ray sources included in the first Fermi-LAT catalog of sources above 10 GeV (1FHL), by considering both blazars and the non negligible fraction of still unassociated gamma-ray sources (UGS, 13%). We perform a statistical analysis of a complete sample of hard gamma-ray sources, included in the 1FHL catalog, mostly composed of HSP blazars, and we present new VLBI observations of the faintest members of the sample. The new VLBI data, complemented by an extensive search of the archives for brighter sources, are essential to gather a sample as large as possible for the assessment of the significance of the correlation between radio and very high energy (E>100 GeV) emission bands. After the characterization of the statistical properties of HSP blazars and UGS, we use a complementary approach, by focusing on an intensive multi-frequency observing VLBI and gamma-ray campaign carried out for one of the most remarkable and closest HSP blazar Markarian 421.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2)_mu discrepancy, proposed U(1) extensions of the SM gauge group have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle, the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for hidden photons, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e+(A,Z)->e+(A,Z)+l^+l^- is investigated and a search for a very narrow resonance in the invariant mass distribution of the lepton pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizsäcker-Williams approximation to calculate the signal cross section of the process, which is widely used to design such experimental setups, is investigated. In a next step, the reaction e+(A,Z)->e+(A,Z)+l^+l^- is analyzed as signal and background process in order to describe existing data obtained by the A1 experiment at MAMI with the aim to give accurate predictions of exclusion limits for the hidden photon parameter space. Finally, the derived methods are used to find predictions for future experiments, e.g., at MESA or at JLAB, allowing for a comprehensive study of the discovery potential of the complementary experiments. In the last part, a feasibility study for probing the hidden photon model by rare kaon decays is performed. For this purpose, invisible as well as visible decays of the hidden photon are considered within different classes of models. This allows one to find bounds for the parameter space from existing data and to estimate the reach of future experiments.