912 resultados para Grampians National Park


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recreational-use value of hiking in the Bellenden Ker National Park, Australia has been estimated using a zonal travel cost model. Multiple destination visitors have been accounted for by converting visitors' own ordinal ranking of the various sites visited to numerical weights, using an expected-value approach. The value of hiking and camping in this national park was found to be $AUS 250,825 per year, or $AUS 144,45 per visitor per year, which is similar to findings from other studies valuing recreational benefits. The management of the park can use these estimates when considering the introduction of a system of user pays fees. In addition, they might be important when decisions need to be made about the allocation of resources for maintenance or upgrade of tracks and facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We Studied microhabitat use by black-faced impala in different herd types during the rut in the cold dry seasons of 2001 and 2002 in the Etosha National Park, Namibia. We investigated whether black-faced impala select feeding sites consistently for their microhabitat characteristics in 2 vegetation types, Karstveld and Tamboti Woodland. We also investigated intra-population differences in microhabitat use between herds of different types. In both habitats, sites used by impala for feeding were more likely to be in the shade, within 2 m of the edges of wooded areas and grassy clearings, with high visibility at I m height, and with lower grass swords than nearby nonfeeding sites. In Karstveld, feeding sites of impala were also located closer to the nearest shrub than were nonfeeding sites. A degree of fine-scale sexual segregation in microhabitat use was demonstrated, but it was not consistent across habitats. Incorporating these trends in the microhabitat use of black-faced impala into management, decisions should maximize the success Of Small populations released at selected off-park sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The history of political and economic inequality in forest villages can shape how and why resource use conflicts arise during the evolution of national parks management. In the Philippine uplands, indigenous peoples and migrant settlers co-exist, compete over land and forest resources, and shape how managers preserve forests through national parks. This article examines how migrants have claimed lands and changed production and exchange relations among the indigenous Tagbanua to build on and benefit from otherwise coercive park management on Palawan Island, the Philippines. Migrant control over productive resources has influenced who, within each group, could sustain agriculture in the face of the state's dominant conservation narrative - valorizing migrant paddy rice and criminalizing Tagbanua swiddens. Upon settling, migrant farmers used new political and economic strengths to tap into provincial political networks in order to be hired at a national park. As a result, they were able to steer management to support paddy rice at the expense of swidden cultivation. While state conservation policy shapes how national parks impact upon local resource access and use, older political economic inequalities in forest villages build on such policies to influence how management affects the livelihoods of poor households.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors affecting the seasonal distribution of the vulnerable black-faced impala at Etosha National Park, Namibia and the spread of the impala in the park since their translocation there in the 1970s were studied in the hot dry season of 2000 and the wet season of 2001 in order to provide information for future translocations of this antelope. In the 30 years since their release in the park, black-faced impala appear to have dispersed a maximum of 31.5 km from their initial release sites, effectively forming five subpopulations based on their five initial release sites. The mean minimum distance that impala had dispersed between water holes since their release was 7.11 +/- 1.47 km. Black-faced impala concentrated strongly around water holes; more than 50% were within 1 km of water holes in both seasons. Changes in population densities in different habitats may have resulted from seasonal movements of impala between adjacent habitats. The role of initial release sites in determining the distribution of threatened species such as the black-faced impala is discussed in light of its importance for future translocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic velocity meter (AVM) sites, located both distant and adjacent to canal water control structures, were constructed and calibrated in L-31W borrow canal and Canal 111 (C-111) to measure canal water velocity. Data were used to compute monthly discharge volumes and overall water budgets for several canal reaches from August 1994 to May 1996. The water budgets indicated extensive aquifer inflows in L-31W associated, in part, with S-332 pump station return flows. Canal and groundwater piezometer data showed 5 distinct hydrologic scenarios (distinguished by the direction and magnitude of hydraulic gradients) in the important Frog Pond area on the eastern boundary of the Everglades National Park. Most of the water lost from C-111 was via surface water losses near the outlet of the system, close to Florida Bay. The distribution of flows during the study suggest an alteration of the present South Dade Conveyance System modification plan to improve water deliveries to Taylor Slough and the Eastern Panhandle of the Everglades National Park. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, I determined the identity, taxonomic placement, and distribution of digenetic trematodes parasitizing the snails Pomacea paludosa and Planorbella duryi at Pa-hay-okee, Everglades National Park. I also characterized temporal and geographic variation in the probability of parasite infection for these snails based on two years of sampling. Although studies indicate that digenean parasites may have important effects both on individual species and the structure of communities, there have been no studies of digenean parasitism on snails within the Everglades ecosystem. For example, the endangered Everglade Snail Kite, a specialist that feeds almost exclusively on Pomacea paludosa, and is known to be a definitive host of digenean parasites, may suffer direct and indirect effects from consumption of parasitized apple snails. Therefore, information on the diversity and abundance of parasites harbored in snail populations in the Everglades should be of considerable interest for management and conservation of wildlife. Juvenile digeneans (cercariae) representing 20 species were isolated from these two snails, representing a quadrupling of the number of species known. Species were characterized based on morphological, morphometric, and sequence data (18S rDNA, COI, and ITS). Species richness of shed cercariae from P. duryi was greater than P. paludosa, with 13 and 7 species respectively. These species represented 14 families. P. paludosa and P. duryi had no digenean species in common. Probability of digenean infection was higher for P. duryi than P. paludosa and adults showed a greater risk of infection than juveniles for both of these snails. Planorbella duryi showed variation in probability of infection between sampling sites and hydrological seasons. The number of unique combinations of multi-species infections was greatest among P. duryi individuals, while the overall percentage of multi-species infections was greatest in P. paludosa. Analyses of six frequently-observed multiple infections from P. duryi suggest the presence of negative interactions, positive interactions, and neutral associations between larval digeneans. These results should contribute to an understanding of the factors controlling the abundance and distribution of key species in the Everglades ecosystem and may in particular help in the management and recovery planning for the Everglade Snail Kite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.