978 resultados para Gas detection
Resumo:
The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Gas chromatography with mass spectrometry is frequently used for the quantification of many classes of substances, including alkylphenols. Alkylphenol polyethoxylates are nonionic surfactants used in a wide variety of industrial and consumer applications. Alkylphenol polyethoxylates can degrade to alkylphenols, which are endocrine disruptors. In analytical validation procedures, the most common parameters studied are the detection and quantification limits, linearity, and recovery; however, the matrix effects are sometimes neglected. Although some investigators have evaluated matrix effects, there is no consensus on how to evaluate them during method validation. In this study, the matrix effects of alkylphenol polyethoxylates (nonylphenol monoethoxylate, nonylphenol diethoxylate, octylphenol monoethoxylate, octylphenol diethoxylate) and alkylphenols (nonylphenol and octylphenol) were studied using solid phase extraction and gas chromatography-mass spectrometry analysis. For alkylphenol polyethoxylates, the matrix effects ranged from 16 to 4692%, whereas for alkylphenols (nonylphenol and octylphenol), the effects were insignificant. Therefore, constructing an analytical curve in the matrix for alkylphenol polyethoxylates is essential. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Direct immersion SPME-GC-MS-MS was used for the analysis of steroids in water at part-per-trillion(ppt) and lower concentrations. The method was validated and extended to real sample analysis. The method were linear from 0.01 to 5 ng/ml with precision less than 10% relative standard deviation for a steroid mixture at 1 ng/ml. Limit of quantitation and limit of detection was found to be 200- 1200 pg/L and 30-200 pg/L respectively and recoveries ranged from 88-103 %. To understand the extraction efficiency of the fiber, a depletion study was performed. The fiber/ sample partition coefficients for the steroids were determined to be 1.0 x 104 to 1.5 x 104 . The extraction was performed without derivatization or the use of an internal standard. SPMEGC-MS-MS effectively demonstrated ultra-trace level detection of steroids in water.
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A methodology to analyze organochlorine pesticides (OCPs) in water samples has been accomplished by using headspace stir bar sorptive extraction (HS-SBSE). The bars were in house coated with a thick film of PDMS in order to properly work in the headspace mode. Sampling was done by a novel HS-SBSE system whereas the analysis was performed by capillary GC coupled mass spectrometric detection (HS-SBSE-GC-MS). The extraction optimization, using different experimental parameters has been established by a standard equilibrium time of 120 min at 85 degrees C. A mixture of ACN/toluene as back extraction solvent promoted a good performance to remove the OCPs sorbed in the bar. Reproducibility between 2.1 and 14.8% and linearity between 0.96 and 1.0 were obtained for pesticides spiked in a linear range between 5 and 17 ng/g in water samples during the bar evaluation.
Resumo:
A thin-layer electrochemical flow cell coupled to capillary electrophoresis with contactless conductivity detection (EC-CE-(CD)-D-4) was applied for the first time to the derivatization and quantification of neutral species using aliphatic alcohols as model compounds. The simultaneous electrooxidation of four alcohols (ethanol, 1-propanol, 1-butanol, and 1-pentanol) to the corresponding carboxylates was carried out on a platinum working electrode in acid medium. The derivatization step required 1 min at 1.6 V vs. Ag/AgCl under stopped flow conditions, which was preceded by a 10 s activation at 0 V. The solution close to the electrode surface was then hydrodynamically injected into the capillary, and a 2.5 min electrophoretic separation was carried out. The fully automated flow system operated at a frequency of 12 analyses per hour. Simultaneous determination of the four alcohols presented detection limits of about 5 x 10(-5) mol As a practical application with a complex matrix, ethanol concentrations were determined in diluted pale lager beer and in nonalcoholic beer. No statistically significant difference was observed between the EC-CE-(CD)-D-4 and gas chromatography with flame ionization detection (GC-FID) results for these samples. The derivatization efficiency remained constant over several hours of continuous operation with lager beer samples (n = 40).
Resumo:
The combination of solid-phase microextraction (SPME) with comprehensive two-dimensional gas chromatography is evaluated here for fatty acid (FA) profiling of the glycerophospholipid fraction from human buccal mucosal cells. A base-catalyzed derivatization reaction selective for polar lipids such as glycerophospholipid was adopted. SPME is compared to a miniaturized liquidliquid extraction procedure for the isolation of FA methyl esters produced in the derivatization step. The limits of detection and limits of quantitation were calculated for each sample preparation method. Because of its lower values of limits of detection and quantitation, SPME was adopted. The extracted analytes were separated, detected, and quantified by comprehensive two-dimensional gas chromatography with flame ionization detection (FID). The combination of SPME and comprehensive two-dimensional gas chromatography with FID, using a selective derivatization reaction in the preliminary steps, proved to be a simple and fast procedure for FA profiling, and was successfully applied to the analysis of adult human buccal mucosal cells.
Resumo:
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow-fiber liquid-phase microextraction in the three-phase mode. Hollow-fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 mu L of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 mu g/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 mu g/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
In the work underlying this thesis solid-phase microextraction (SPME) was evaluated as a passive sampling technique for organophosphate triesters in indoor air. These compounds are used on a large scale as flame-retarding and plastizicing additives in a variety of materials and products, and have proven to be common pollutants in indoor air. The main objective of this work was to develop an accurate method for measuring the volatile fraction. Such a method can be used in combination with active sampling to obtain information regarding the vapour/particulate distribution in different indoor environments. SPME was investigated under both equilibrium and non-equilibrium conditions and parameters associated with these different conditions were estimated. In Paper I, time-weighted average (TWA) SPME under dynamic conditions was investigated in order to obtain a fast air sampling method for organophosphate triesters. Among the investigated SPME coatings, the absorptive PDMS polymer had the highest affinity for the organophosphate triesters and was consequently used in all further work. Since the sampling rate is dependent on the agitation conditions, the linear airflow rates had to be carefully considered. Sampling periods as short as 1 hour were shown to be sufficient for measurements in the ng-μg m-3 range when using a PDMS 100-μm fibre and a linear flow rate above 7 cm s-1 over the fibre. SPME under equilibrium conditions is rather time-consuming, even under dynamic conditions, for slowly partitioning compounds such as organophosphate triesters. Nevertheless, this method has some significant advantages. For instance, the limit of detection is much lower compared to 1 h TWA sampling. Furthermore, the sampling time can be ignored as long as equilibrium has been attained. In Paper II, SPME under equilibrium conditions was investigated and evaluated for organophosphate triester vapours. Since temperature and humidity are closely associated with the distribution constant a simple study of the effect of these parameters was performed. The obtained distribution constants were used to determine the air levels in a common indoor environment. SPME and parallel active sampling on filters yielded similar results, indicating that the detected compounds were almost entirely associated with the vapour phase To apply dynamic SPME method in the field a sampler device, which enables controlled linear airflow rates to be applied, was constructed and evaluated (Paper III). This device was developed for application of SPME and active sampling in parallel. A GC/PICI-MS/MS method was developed and used in combination with active sampling of organophosphate triesters in indoor air (Paper IV). The combination of MS/MS and the soft ionization achieved with methanol as reagent gas yielded high selectivity and detection limits comparable to those provided by GC with nitrogen-phosphorus detection (NPD). The method limit of detection, when sampling 1.5 m3 of air, was in the range 0.1-1.4 ng m-3. In Paper V, the developed MS method was used in combination with SPME for indoor air measurements. The levels detected in the investigated indoor environments range from a few ng to μg m-3. Tris(2-chloropropyl) phosphate was detected at a concentration as high as 7 μg m-3 in a newly rebuilt lecture room.
Resumo:
Oceans are key sources and sinks in the global budgets of significant atmospheric trace gases, termed Volatile Organic Compounds (VOCs). Despite their low concentrations, these species have an important role in the atmosphere, influencing ozone photochemistry and aerosol physics. Surprisingly, little work has been done on assessing their emissions or transport mechanisms and rates between ocean and atmosphere, all of which are important when modelling the atmosphere accurately.rnA new Needle Trap Device (NTD) - GC-MS method was developed for the effective sampling and analysis of VOCs in seawater. Good repeatability (RSDs <16 %), linearity (R2 = 0.96 - 0.99) and limits of detection in the range of pM were obtained for DMS, isoprene, benzene, toluene, p-xylene, (+)-α-pinene and (-)-α-pinene. Laboratory evaluation and subsequent field application indicated that the proposed method can be used successfully in place of the more usually applied extraction techniques (P&T, SPME) to extend the suite of species typically measured in the ocean and improve detection limits. rnDuring a mesocosm CO2 enrichment study, DMS, isoprene and α-pinene were identified and quantified in seawater samples, using the above mentioned method. Based on correlations with available biological datasets, the effects of ocean acidification as well as possible ocean biological sources were investigated for all examined compounds. Future ocean's acidity was shown to decrease oceanic DMS production, possibly impact isoprene emissions but not affect the production of α-pinene. rnIn a separate activity, ocean - atmosphere interactions were simulated in a large scale wind-wave canal facility, in order to investigate the gas exchange process and its controlling mechanisms. Air-water exchange rates of 14 chemical species (of which 11 VOCs) spanning a wide range of solubility (dimensionless solubility, α = 0:4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were obtained under various turbulent (wind speed at ten meters height, u10 = 0:8 to 15ms-1) and surfactant modulated (two different sized Triton X-100 layers) surface conditions. Reliable and reproducible total gas transfer velocities were obtained and the derived values and trends were comparable to previous investigations. Through this study, a much better and more comprehensive understanding of the gas exchange process was accomplished. The role of friction velocity, uw* and mean square slope, σs2 in defining phenomena such as waves and wave breaking, near surface turbulence, bubbles and surface films was recognized as very significant. uw* was determined as the ideal turbulent parameter while σs2 described best the related surface conditions. A combination of both uw* and σs2 variables, was found to reproduce faithfully the air-water gas exchange process. rnA Total Transfer Velocity (TTV) model provided by a compilation of 14 tracers and a combination of both uw* and σs2 parameters, is proposed for the first time. Through the proposed TTV parameterization, a new physical perspective is presented which provides an accurate TTV for any tracer within the examined solubility range. rnThe development of such a comprehensive air-sea gas exchange parameterization represents a highly useful tool for regional and global models, providing accurate total transfer velocity estimations for any tracer and any sea-surface status, simplifying the calculation process and eliminating inevitable calculation uncertainty connected with the selection or combination of different parameterizations.rnrn
Resumo:
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).
Resumo:
Smoke spikes occurring during transient engine operation have detrimental health effects and increase fuel consumption by requiring more frequent regeneration of the diesel particulate filter. This paper proposes a decision tree approach to real-time detection of smoke spikes for control and on-board diagnostics purposes. A contemporary, electronically controlled heavy-duty diesel engine was used to investigate the deficiencies of smoke control based on the fuel-to-oxygen-ratio limit. With the aid of transient and steady state data analysis and empirical as well as dimensional modeling, it was shown that the fuel-to-oxygen ratio was not estimated correctly during the turbocharger lag period. This inaccuracy was attributed to the large manifold pressure ratios and low exhaust gas recirculation flows recorded during the turbocharger lag period, which meant that engine control module correlations for the exhaust gas recirculation flow and the volumetric efficiency had to be extrapolated. The engine control module correlations were based on steady state data and it was shown that, unless the turbocharger efficiency is artificially reduced, the large manifold pressure ratios observed during the turbocharger lag period cannot be achieved at steady state. Additionally, the cylinder-to-cylinder variation during this period were shown to be sufficiently significant to make the average fuel-to-oxygen ratio a poor predictor of the transient smoke emissions. The steady state data also showed higher smoke emissions with higher exhaust gas recirculation fractions at constant fuel-to-oxygen-ratio levels. This suggests that, even if the fuel-to-oxygen ratios were to be estimated accurately for each cylinder, they would still be ineffective as smoke limiters. A decision tree trained on snap throttle data and pruned with engineering knowledge was able to use the inaccurate engine control module estimates of the fuel-to-oxygen ratio together with information on the engine control module estimate of the exhaust gas recirculation fraction, the engine speed, and the manifold pressure ratio to predict 94% of all spikes occurring over the Federal Test Procedure cycle. The advantages of this non-parametric approach over other commonly used parametric empirical methods such as regression were described. An application of accurate smoke spike detection in which the injection pressure is increased at points with a high opacity to reduce the cumulative particulate matter emissions substantially with a minimum increase in the cumulative nitrogrn oxide emissions was illustrated with dimensional and empirical modeling.