950 resultados para GLUCEMIA BASAL
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
An 11-year-old neutered female domestic shorthair indoor cat was presented to our hospital for treatment of a left-sided rostro-temporal basal meningioma. Focal seizures in the facial muscles had been observed sporadically for 1 year. Two weeks prior to presentation the cat had developed generalised seizures and was treated with symptomatic anticonvulsive treatment. Focal facial seizures, especially on the right side, persisted after medical therapy. From the computed tomography scan, a basal meningioma was suspected by the treating veterinarian. A left-sided suprazygomatical temporobasal approach to the zygomatic arch was chosen because it causes less soft tissue damage. After craniotomy, durotomy and gentle dorsal retraction of the left piriform lobe, the meningioma was removed. Postoperative magnetic resonance imaging confirmed complete excision of the tumour. One day after surgery the cat was alert and a left-sided facial nerve palsy was noticed. Otherwise the neurological examination was normal. Anticonvulsive and eye moistening therapy was continued for 3 months. Six months after surgery the cat was clinically normal without any recurrence of seizures.
Resumo:
The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters 1], whose polar subcellular localization determines the flow directionality. PIN-mediated auxin transport mediates the spatial and temporal activity of the auxin response machinery 2-7] that contributes to embryo patterning processes, including establishment of the apical (shoot) and basal (root) embryo poles 8]. However, little is known of upstream mechanisms guiding the (re)polarization of auxin fluxes during embryogenesis 9]. Here, we developed a model of plant embryogenesis that correctly generates emergent cell polarities and auxin-mediated sequential initiation of apical-basal axis of plant embryo. The model relies on two precisely localized auxin sources and a feedback between auxin and the polar, subcellular PIN transporter localization. Simulations reproduced PIN polarity and auxin distribution, as well as previously unknown polarization events during early embryogenesis. The spectrum of validated model predictions suggests that our model corresponds to a minimal mechanistic framework for initiation and orientation of the apical-basal axis to guide both embryonic and postembryonic plant development.
Resumo:
A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).
Resumo:
A procedure is presented for using a simple flowline model to calculate the fraction of the bed that is thawed beneath present-day ice sheets, and therefore for mapping thawed, frozen, melting and freezing basal thermal zones. The procedure is based on the proposition, easily demonstrated, that variations in surface slope along ice flowlines are due primarily to variations in bed topography and ice-bed coupling, where ice-bed coupling for sheet flow is represented by the basal thawed fraction. This procedure is then applied to the central flowlines of flow bands on the Antarctic ice sheet where accumulation rates, surface elevations and bed topography are mapped with sufficient accuracy, and where sheet flow rather than stream flow prevails. In East Antarctica, the usual condition is a low thawed fraction in subglacial highlands, but a high thawed fraction in subglacial basins and where ice converges on ice streams. This is consistent with a greater depression of the basal melting temperature and a slower rate of conducting basal heat to the surface where ice is thick, and greater basal frictional heat production where ice flow is fast, as expected for steady-state flow. This correlation is reduced or even reversed where steady-state flow has been disrupted recently, notably where ice-stream surges produced the Dibble and Dalton Iceberg Tongues, both of which are now stagnating. In West Antarctica, for ice draining into the Pine Island Bay polynya of the Amundsen Sea, the basal thawed fraction is consistent with a prolonged and ongoing surge of Pine Island Glacier and with a recently initiated surge of Thwaites Glacier. For ice draining into the Ross Ice Shelf, long ice streams extend nearly to the West Antarctic ice divide. Over the rugged bed topography near the ice divide, no correlation consistent with steady-state sheet flow exists between ice thickness and the basal thawed fraction. The bed is wholly thawed beneath ice streams, even where stream flow is slow. This is consistent with ongoing gravitational collapse of ice entering the Ross Sea embayment and with unstable flow in the ice streams.
Resumo:
Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.
Resumo:
After the NEEM (Greenland) deep ice-core drilling was declared terminated with respect to developing stratigraphic climate reconstructions, efforts were turned toward collecting basal ice-sheet debris and, if possible, drilling into the bedrock itself. In 2010, several meters of banded debris-rich ice were obtained under normal ice-drilling operations with the NEEM version of the Hans Tausen (HT) drill, but further penetration was obstructed by a rock in the path of the drill head at 2537.36 m. During short campaigns in 2011 and 2012, attempts were made to penetrate further using various reinforced ice cutters mounted on the HT drill head, tailored to cut through rock. These had some success in penetrating coarse material, but produced severely damaged cutters. Additionally a 51 mm diameter diamond cutting tipped rock drill was adapted to fit the NEEM drill. With this device, several additional meters of core containing subglacial sediments, rocks and rock fragments were collected. With these tools 1.39 m of additional material were obtained during the 2011 field season, and 7.1 m during 2012. Subglacial water refreezing into the newly formed borehole hindered further penetration, and the bedrock interface was not reached before final closure of the NEEM Camp.
Resumo:
Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain.
Resumo:
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
Resumo:
Despite of much success of breast cancer treatment, basal-like breast cancer subtype still presented as a clinical challenge to mammary oncologist for its lack of available targeted therapy owing to their negative expression of targeted molecules, such as PgR, ERα and Her2. These molecules are all critical regulators in mammary gland development. EZH2, a histone methyltransferase, by forming Polycomb Repressive Complex 2(PRC2) can directly suppress a large array of developmental regulators. Overexpression of cyclin E has also been correlated with basal-like (triple-negative) breast cancer and poor prognosis. We found an important functional link between these two molecules. Cyclin E/Cdk2 can enhance PRC2 function by phosphorylating a specific residue of EZH2, threonine 416 and increasing EZH2's ability to complex with SUZ12. This regulation would further recruit whole PRC2 complex to core promoter regions of these developmental regulators. The local enrichment of PRC2 complex would then trimethylate H3K27 around the core promoter regions and suppress the expression of targeted genes, which included PgR, ERα, erbB2 and BRCA1. This widespread gene suppressive effect imposed by highly active PRC2 complex would then transform the lumina) type cell to adopt a basal-like phenotype. This finding suggested deregulated Cdk2 activity owing to cyclin E overexpression may contribute to basal phenotype through enhancing epigenetic silencing effects by regulating PRC2 function. Inhibition of Cdk2 activity in basal-like cancer cells may help release the suppression, reexpress the silenced genes and become responsive to existing anti-hormone or anti-Her2 therapy. From this study, the mechanisms described here provided a rationale to target basal-like breast cancer by new combinational therapy of Cdk2 inhibitors together with Lapatinib, or Aromatin. ^