935 resultados para Functional Requirements for Authority Data (FRAD)
Resumo:
Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The hand is one of the most important instruments of the human body, mainly due to the possibility of grip movements. Grip strength has been described as an important predictor of functional capacity. There are several factors that may influence it, such as gender, age and anthropometric characteristics. Functional capacity refers to the ability to perform daily activities which allow the individual to self-care and to live with autonomy. Composite Physical Function (CPF) scale is an evaluation tool for functional capacity that includes daily activities, self-care, sports activities, upper limb function and gait capacity. In 2011, Portugal had 15% of young population (0-14years) and 19% of elderly population (over 65 years). Considering the double-ageing phenomen, it is important to understand the effect of the grip strength in elderly individuals, considering their characteristics, as the need to maintainin dependency as long as possible.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Analyzing functional data often leads to finding common factors, for which functional principal component analysis proves to be a useful tool to summarize and characterize the random variation in a function space. The representation in terms of eigenfunctions is optimal in the sense of L-2 approximation. However, the eigenfunctions are not always directed towards an interesting and interpretable direction in the context of functional data and thus could obscure the underlying structure. To overcome such difficulty, an alternative to functional principal component analysis is proposed that produces directed components which may be more informative and easier to interpret. These structural components are similar to principal components, but are adapted to situations in which the domain of the function may be decomposed into disjoint intervals such that there is effectively independence between intervals and positive correlation within intervals. The approach is demonstrated with synthetic examples as well as real data. Properties for special cases are also studied.
Resumo:
Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity.
Resumo:
The DRG classification provides a useful tool for the evaluation of hospital care. Indicators such as readmissions and mortality rates adjusted for the hospital Casemix could be adopted in Switzerland at the price of minor additions to the hospital discharge record. The additional information required to build patients histories and to identify the deaths occurring after hospital discharge is detailed.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
Background and Purpose-The safety and efficacy of thrombolysis in cervical artery dissection (CAD) are controversial. The aim of this meta-analysis was to pool all individual patient data and provide a valid estimate of safety and outcome of thrombolysis in CAD.Methods-We performed a systematic literature search on intravenous and intra-arterial thrombolysis in CAD. We calculated the rates of pooled symptomatic intracranial hemorrhage and mortality and indirectly compared them with matched controls from the Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register. We applied multivariate regression models to identify predictors of excellent (modified Rankin Scale=0 to 1) and favorable (modified Rankin Scale=0 to 2) outcome.Results-We obtained individual patient data of 180 patients from 14 retrospective series and 22 case reports. Patients were predominantly female (68%), with a mean +/- SD age of 46 +/- 11 years. Most patients presented with severe stroke (median National Institutes of Health Stroke Scale score=16). Treatment was intravenous thrombolysis in 67% and intra-arterial thrombolysis in 33%. Median follow-up was 3 months. The pooled symptomatic intracranial hemorrhage rate was 3.1% (95% CI, 1.3 to 7.2). Overall mortality was 8.1% (95% CI, 4.9 to 13.2), and 41.0% (95% CI, 31.4 to 51.4) had an excellent outcome. Stroke severity was a strong predictor of outcome. Overlapping confidence intervals of end points indicated no relevant differences with matched controls from the Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register.Conclusions-Safety and outcome of thrombolysis in patients with CAD-related stroke appear similar to those for stroke from all causes. Based on our findings, thrombolysis should not be withheld in patients with CAD. (Stroke. 2011;42:2515-2520.)
Resumo:
The estrogen-responsive element (ERE) present in the 5'-flanking region of the Xenopus laevis vitellogenin (vit) gene B1 has been characterized by transient expression analysis of chimeric vit-tk-CAT (chloramphenicol acetyltransferase) gene constructs transfected into the human estrogen-responsive MCF-7 cell line. The vit B1 ERE behaves like an inducible enhancer, since it is able to confer estrogen inducibility to the heterologous HSV thymidine kinase (tk) promoter in a relative position- and orientation-independent manner. In this assay, the minimal B1 ERE is 33 bp long and consists of two 13 bp imperfect palindromic elements both of which are required for the enhancer activity. A third imperfect palindromic element is present further upstream within the 5'-flanking region of the gene but is unable to confer hormone responsiveness by itself. Similarly, neither element forming the B1 ERE can alone confer estrogen inducibility to the tk promoter. However, in combinations of two, all three imperfect palindromes can act cooperatively to form a functional ERE. In contrast a single 13 bp perfect palindromic element, GGTCACTGTGACC, such as the one found upstream of the vit gene A2, is itself sufficient to act as a fully active ERE. Single point mutations within this element abolish estrogen inducibility, while a defined combination of two mutations converts this ERE into a glucocorticoid-responsive element.
Resumo:
The Iowa Department of Transportation Office of Research & Analytics has created this Guide to help researchers and contractors of the Iowa DOT attain compliance with Federal and Iowa DOT Public Access Policies for transportation-related research publications and datasets. This guide provides direction for filling out the data management plan template (also attached to this record) that will help satisfy Iowa DOT and U.S. DOT requirements.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetracoordinated Sn compounds of the CH3SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH3, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-311++G** basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms.
Resumo:
This study was done for ABB Ltd. Motors and Generators business unit in Helsinki. In this study, global data movement in large businesses is examined from a product data management (PDM) and enterprise resource planning (ERP) point-of-view. The purpose of this study was to understand and map out how a large global business handles its data in a multiple site structure and how it can be applied in practice. This was done by doing an empirical interview study on five different global businesses with design locations in multiple countries. Their master data management (MDM) solutions were inspected and analyzed to understand which solution would best benefit a large global architecture with many design locations. One working solution is a transactional hub which negates the effects of multisite transfers and reduces lead times. Also, the requirements and limitations of the current MDM architecture were analyzed and possible reform ideas given.