955 resultados para Forest Management
Resumo:
"April 23,1998, April 30, 1998, May 5, 1998, June 4, 1998, June 17, 1998"--Pt. 2.
Resumo:
Individual actions to avoid, benefit from, or cope with climate change impacts partly shape adaptation; much research on adaptation has focused at the systems level, overlooking drivers of individual responses. Theoretical frameworks and empirical studies of environmental behavior identify a complex web of cognitive, affective, and evaluative factors that motivate stewardship. We explore the relationship between knowledge of, and adaptation to, widespread, climate-induced tree mortality to understand the cognitive (i.e., knowledge and learning), affective (i.e., attitudes and place attachment), and evaluative (i.e., use values) factors that influence how individuals respond to climate-change impacts. From 43 semistructured interviews with forest managers and users in a temperate forest, we identified distinct responses to local, climate-induced environmental changes that we then categorized as either behavioral or psychological adaptations. Interviewees developed a depth of knowledge about the dieback through a combination of direct, place-based experiences and indirect, mediated learning through social interactions. Knowing that the dieback was associated with climate change led to different adaptive responses among the interviewees, although knowledge alone did not explain this variation. Forest users reported psychological adaptations to process negative attitudes; these adaptations were spurred by knowledge of the causes, losses of intangible values, and impacts to a species to which they held attachment. Behavioral adaptations exclusive to a high level of knowledge included actions such as using the forests to educate others or changing transportation behaviors to reduce personal energy consumption. Managers integrated awareness of the dieback and its dynamics across spatial scales into current management objectives. Our findings suggest that adaptive management may occur from the bottom up, as individual managers implement new practices in advance of policies. As knowledge of climate-change impacts in local environments increases, resource users may benefit from programs and educational interventions that facilitate coping strategies.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Resumo:
In this work, the relationship between diameter at breast height (d) and total height (h) of individual-tree was modeled with the aim to establish provisory height-diameter (h-d) equations for maritime pine (Pinus pinaster Ait.) stands in the Lomba ZIF, Northeast Portugal. Using data collected locally, several local and generalized h-d equations from the literature were tested and adaptations were also considered. Model fitting was conducted by using usual nonlinear least squares (nls) methods. The best local and generalized models selected, were also tested as mixed models applying a first-order conditional expectation (FOCE) approximation procedure and maximum likelihood methods to estimate fixed and random effects. For the calibration of the mixed models and in order to be consistent with the fitting procedure, the FOCE method was also used to test different sampling designs. The results showed that the local h-d equations with two parameters performed better than the analogous models with three parameters. However a unique set of parameter values for the local model can not be used to all maritime pine stands in Lomba ZIF and thus, a generalized model including covariates from the stand, in addition to d, was necessary to obtain an adequate predictive performance. No evident superiority of the generalized mixed model in comparison to the generalized model with nonlinear least squares parameters estimates was observed. On the other hand, in the case of the local model, the predictive performance greatly improved when random effects were included. The results showed that the mixed model based in the local h-d equation selected is a viable alternative for estimating h if variables from the stand are not available. Moreover, it was observed that it is possible to obtain an adequate calibrated response using only 2 to 5 additional h-d measurements in quantile (or random) trees from the distribution of d in the plot (stand). Balancing sampling effort, accuracy and straightforwardness in practical applications, the generalized model from nls fit is recommended. Examples of applications of the selected generalized equation to the forest management are presented, namely how to use it to complete missing information from forest inventory and also showing how such an equation can be incorporated in a stand-level decision support system that aims to optimize the forest management for the maximization of wood volume production in Lomba ZIF maritime pine stands.
Resumo:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Resumo:
Due to its relationship with other properties, wood density is the main wood quality parameter. Modern, accurate methods - such as X-ray densitometry - are applied to determine the spatial distribution of density in wood sections and to evaluate wood quality. The objectives of this study were to determinate the influence of growing conditions on wood density variation and tree ring demarcation of gmelina trees from fast growing plantations in Costa Rica. The wood density was determined by X-ray densitometry method. Wood samples were cut from gmelina trees and were exposed to low X-rays. The radiographic films were developed and scanned using a 256 gray scale with 1000 dpi resolution and the wood density was determined by CRAD and CERD software. The results showed tree-ring boundaries were distinctly delimited in trees growing in site with rainfall lower than 25 10 mm/year. It was demonstrated that tree age, climatic conditions and management of plantation affects wood density and its variability. The specific effect of variables on wood density was quantified by for multiple regression method. It was determined that tree year explained 25.8% of the total variation of density and 19.9% were caused by climatic condition where the tree growing. Wood density was less affected by the intensity of forest management with 5.9% of total variation.
Resumo:
The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from an Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark) positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel element length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.
Resumo:
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees >= 20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha(-1). Size class frequency distributions appeared unimodal at two high-density sites, but were essentially arnodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93-95% of commercial trees (>= 45 cm diameter at the time of logging), illegally eliminated 31-47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9-37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ficus arpazusa Casaretto is a fig tree native to the Atlantic Rain Forest sensu lato. High levels of genetic diversity and no inbreeding were observed in Ficus arpazusa. This genetic pattern is due to the action of its pollinator, Pegoscapus sp., which disperses pollen an estimated distance of 5.6 km, and of Ficus arpazusa`s mating system which, in the study area, is allogamous. This study highlights the importance of adding both ecological and genetic data into population studies, allowing a better understanding of evolutionary processes and in turn increasing the efficacy of forest management and revegetation projects, as well as species conservation.
Resumo:
Six species of trees located in the dry sclerophyll forests of southeast Queensland were studied to ascertain which was most suitable to be retained as hollow-bearing trees for nesting and denning by arboreal marsupials. Generally for all tree species, the number of entrances to hollows was positively correlated with the diameter at breast height (DBH) and the growth stage, and entrance diameters also increased in trees with a larger DBH. However, there were differences between the species; Corymbia citriodora had few hollows until the individuals were very large while Eucalyptus crebra had low numbers of hollows throughout its entire size range. It was concluded that a mixture of tree species provided a range of hollow sizes and positions that would be suitable for nesting and denning by arboreal marsupials in those forests. There were large differences between tree species in the relationship between tree size and estimated age. Five of the tree species took between 186 and 230 years to begin to produce hollows while E. crebra took up to 324 years. This suggests that tree species other than E. crebra may be the most preferred for retention in areas where hollow-bearing tree densities are lower than the prescribed level. Other data also suggests there are likely to be enough trees in larger size classes that would begin to form hollows within the next 50 years to compensate for an expected loss of hollow-bearing stags during that same period. In terms of forest operation, the retention of six hollow-bearing trees/ha would represent an estimated loss of 7.3-15% wood production. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
No contexto da reforma do Estado brasileiro, a descentraliza????o das compet??ncias pol??ticas e administrativas na arena ambiental tem se mostrado um processo din??mico. Muitas inst??ncias locais j?? respondem pela quest??o ambiental. No entanto, isso n??o significa mais compet??ncia administrativa, sustentabilidade institucional, tampouco participa????o democr??tica. Dois casos de pol??tica ambiental s??o retratados no texto: o licenciamento industrial pelos munic??pios brasileiros e o a gest??o florestal pelo Estado do Mato Grosso. A descentraliza????o do licenciamento ambiental para o ??mbito municipal ainda parece fr??gil em munic??pios menores, em um processo que parece ser induzido pelo Estado e n??o pelo controle social local. Em rela????o ?? pol??tica florestal, o caso do Mato Grosso ?? emblem??tico. Ele mostra que a coopera????o com o poder p??blico federal e, em determinados momentos, sua coordena????o s??o de suma import??ncia para que as pol??ticas p??blicas ambientais n??o fiquem ?? merc?? de governos estaduais, que podem envies??-las em favor do ???desenvolvimentismo???, nem percam a legitimidade adiante da fragilidade financeira e institucional dos ??rg??os ambientais locais.
Resumo:
Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.