772 resultados para Foraging ecology
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.
Resumo:
Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.
Resumo:
Mixed-species foraging associations may form to enhance feeding success or to avoid predators. We report the costs and consequences of an unusual foraging association between an endemic foliage gleaning tupaid (Nicobar treeshrew Tupaia nicobarica) and two species of birds; one an insectivorous commensal (greater racket-tailed drongo Dicrurus paradiseus) and the other a diurnal raptor and potential predator (Accipiter sp.). In an alliance driven, and perhaps engineered, by drongos, these species formed cohesive groups with predictable relationships. Treeshrew breeding pairs were found more frequently than solitary individuals with sparrowhawks and were more likely to tolerate sparrowhawks in the presence of drongos. Treeshrews maintained greater distances from sparrowhawks than drongos, and permitted the raptors to come closer when drongos were present. Treeshrew foraging rates declined in the presence of drongos; however, the latter may provide them predator avoidance benefits. The choice of the raptor to join the association is intriguing; particular environmental resource states may drive the evolution of such behavioural strategies. Although foraging benefits seem to be the primary driver of this association, predator avoidance also influences interactions, suggesting that strategies driving the formation of flocks may be complex and context dependent with varying benefits for different actors.
Resumo:
The question at issue in this dissertation is the epistemic role played by ecological generalizations and models. I investigate and analyze such properties of generalizations as lawlikeness, invariance, and stability, and I ask which of these properties are relevant in the context of scientific explanations. I will claim that there are generalizable and reliable causal explanations in ecology by generalizations, which are invariant and stable. An invariant generalization continues to hold or be valid under a special change called an intervention that changes the value of its variables. Whether a generalization remains invariant during its interventions is the criterion that determines whether it is explanatory. A generalization can be invariant and explanatory regardless of its lawlike status. Stability deals with a generality that has to do with holding of a generalization in possible background conditions. The more stable a generalization, the less dependent it is on background conditions to remain true. Although it is invariance rather than stability of generalizations that furnishes us with explanatory generalizations, there is an important function that stability has in this context of explanations, namely, stability furnishes us with extrapolability and reliability of scientific explanations. I also discuss non-empirical investigations of models that I call robustness and sensitivity analyses. I call sensitivity analyses investigations in which one model is studied with regard to its stability conditions by making changes and variations to the values of the model s parameters. As a general definition of robustness analyses I propose investigations of variations in modeling assumptions of different models of the same phenomenon in which the focus is on whether they produce similar or convergent results or not. Robustness and sensitivity analyses are powerful tools for studying the conditions and assumptions where models break down and they are especially powerful in pointing out reasons as to why they do this. They show which conditions or assumptions the results of models depend on. Key words: ecology, generalizations, invariance, lawlikeness, philosophy of science, robustness, explanation, models, stability
Resumo:
Islam, Development, Ecology,
Resumo:
Herbivorous insects, their host plants and natural enemies form the largest and most species-rich communities on earth. But what forces structure such communities? Do they represent random collections of species, or are they assembled by given rules? To address these questions, food webs offer excellent tools. As a result of their versatile information content, such webs have become the focus of intensive research over the last few decades. In this thesis, I study herbivore-parasitoid food webs from a new perspective: I construct multiple, quantitative food webs in a spatially explicit setting, at two different scales. Focusing on food webs consisting of specialist herbivores and their natural enemies on the pedunculate oak, Quercus robur, I examine consistency in food web structure across space and time, and how landscape context affects this structure. As an important methodological development, I use DNA barcoding to resolve potential cryptic species in the food webs, and to examine their effect on food web structure. I find that DNA barcoding changes our perception of species identity for as many as a third of the individuals, by reducing misidentifications and by resolving several cryptic species. In terms of the variation detected in food web structure, I find surprising consistency in both space and time. From a spatial perspective, landscape context leaves no detectable imprint on food web structure, while species richness declines significantly with decreasing connectivity. From a temporal perspective, food web structure remains predictable from year to year, despite considerable species turnover in local communities. The rate of such turnover varies between guilds and species within guilds. The factors best explaining these observations are abundant and common species, which have a quantitatively dominant imprint on overall structure, and suffer the lowest turnover. By contrast, rare species with little impact on food web structure exhibit the highest turnover rates. These patterns reveal important limitations of modern metrics of quantitative food web structure. While they accurately describe the overall topology of the web and its most significant interactions, they are disproportionately affected by species with given traits, and insensitive to the specific identity of species. As rare species have been shown to be important for food web stability, metrics depicting quantitative food web structure should then not be used as the sole descriptors of communities in a changing world. To detect and resolve the versatile imprint of global environmental change, one should rather use these metrics as one tool among several.
Resumo:
The movement and habitat utilization patterns were studied in an Asian elephant population during 1981-83 within a 1130 km2 area in southern India (110 30' N to 120 0' N and 760 50' E to 770 15' E). The study area encompasses a diversity of vegetation types from dry thorn forest (250-400 m) through deciduous forest (400-1400 m) to stunted evergreen shola forest and grassland (1400-1800 m). Home range sizes of some identified elephants were between 105 and 320 km2. Based on the dry season distribution, five different elephant clans, each consisting of between 50 and 200 individuals and having overlapping home ranges, could be defined within the study area. Seaso- nal habitat preferences were related to the availability of water and the palatability of food plants. During the dry months (January-April) elephants congregated at high densities of up to five individuals kM-2 in river valleys where browse plants had a much higher protein content than the coarse tall grasses on hill slopes. With the onset of rains of the first wet season (May- August) they dispersed over a wider area at lower densities, largely into the tall grass forests, to feed on the fresh grasses, which then had a high protein value. During the second wet season (September-December), when the tall grasses became fibrous, they moved into lower elevation short grass open forests. The normal movement pattern could be upset during years of adverse environmental con- ditions. However, the movement pattern of elephants in this region has not basically changed for over a century, as inferred from descriptions recorded during the nineteenth century.
Resumo:
Introduction of agriculture three millennia ago in Peninsular India’s Western Ghats altered substantially ancient tropical forests. Early agricultural communities, nevertheless, strived to attain symbiotic harmony with nature as evident from prevalence of numerous sacred groves, patches of primeval forests sheltering biodiversity and hydrology. Groves enhanced heterogeneity of landscapes involving elements of successional forests and savannas favouring rich wildlife. A 2.25 km2 area of relic forest was studied at Kathalekan in Central Western Ghats. Interspersed with streams studded with Myristica swamps and blended sparingly with shifting cultivation fallows, Kathalekan is a prominent northernmost relic of southern Western Ghat vegetation. Trees like Syzygium travancoricum (Critically Endangered), Myristica magnifica (Endangered) and Gymnacranthera canarica (Vulnerable) and recently reported Semecarpus kathalekanensis, are exclusive to stream/swamp forest (SSF). SSF and non-stream/swamp forest (NSSF) were studied using 18 transects covering 3.6 ha. Dipterocarpaceae, its members seldom transgressing tropical rain forests, dominate SSF (21% of trees) and NSSF (27%). The ancient Myristicaceae ranks high in tree population (19% in SSF and 8% in NSSF). Shannon-Weiner diversity for trees is higher (>3) in six NSSF transects compared to SSF (<3). Higher tree endemism (45%), total endemic tree population (71%) and significantly higher above ground biomass (349 t/ha) cum carbon sequestration potential (131 t/ha) characterizes SSF. Faunal richness is evident from amphibians (35 species - 26 endemics, 11 in IUCN Red List). This study emphasizes the need for bringing to light more of relic forests for their biodiversity, carbon sequestration and hydrology. The lives of marginal farmers and forest tribes can be uplifted through partnership in carbon credits, by involving them in mitigating global climatic change through conservation and restoration of high biomass watershed forests.
Resumo:
Males and females may differ in morphology or behaviour because of contrasting factors affecting their reproductive success. In polygynous mammals with a marked sexual dimorphism, males are more likely to exhibit risky behaviour promoting reproductive success (Trivers 1985). In this study the authors present evidence that pubertal and adult male Asian elephants, Elephas maximus (above 15 years) incur greater risks than female-led family herds by foraging on cultivated crops which have more nutritive value than wild food plants.
Resumo:
The aim of this thesis was to study ecology of Baltic Sea ice from two perspectives. In the first two studies, sea-ice ecology from riverine-influenced fast ice to drift ice in the Bothnian Bay was investigated, whereas the last two studies focus on the sensitivity of sea-ice bacteria and algae to UVA examined in situ. The seasonal sea ice cover is one of the main characteristics of the Baltic Sea, and despite the brackish parental water, the ice structure is similar to polar ice with saline brine inclusions, the sea ice habitat. The decreasing seawater salinity from the northern Baltic Sea to the Bothnian Bay translates to decreasing brine volumes along the gradient, governing the size and community structure of the food webs in ice. However, the drift and fast ice in the Bothnian Bay may differ greatly in this sense, as drift ice may have been formed at more southern locations. Rafting and the formation of snow ice are common processes in the ice field of the Bothnian Bay. As evidenced in this thesis, rafting altered the vertical distribution of organisms and snow-ice formation provided habitable space in the better-illuminated, nitrogen-rich surface layer. The divergence between fast and drift ice became apparent at the more advanced stages, and chlorophyte biomass decreased from fast to drift ice, while the opposite held true for protozoan and metazoan biomass. The brine volumes affected the communities somewhat, and a higher percentage of flagellate species was generally linked to lower brine volumes, whereas chain-forming diatoms were mostly concentrated in layers with larger brine volumes. These results add to knowledge of the ecological significance of the ice cover lasting up to 7 months per year in this area. Sea-ice food webs are generally light-limited, but while increasing light irradiances typically enhance the primary production and further, the secondary production in sea ice, any increase in solar radiation also includes an increase in harmful UVA radiation. The Baltic Sea ice microbial communities were clearly sensitive to UVA and the responses were strongly linked to the earlier light history, as well as to the solar irradiances they were exposed to. The increased biomass of chlorophytes and pennate diatoms, when UVA was excluded, indicates that their normally minor contribution to the biomass in the upper layers of sea ice might be partly dictated by UVA. The effects of UVA on bacterial production in Baltic Sea ice mostly followed the responses in algal growth, but occasionally the exposure to UVA even enhanced the bacterial production. The dominant bacterial class, Flavobacteria, seemed to be UVA-tolerant, whereas all the Alpha-, Beta- and Gammaproteobacteria present in the surface layer showed UVA sensitivity. These results indicate that changes in the light field of ice may alter the community structure and affect the functioning of ice food webs, and are of importance when the effects of thinning of the ice cover are assessed.
Resumo:
Winter is a significant period for the seasonality of northern plants, but is often overlooked when studying the interactions of plants and their environment. This study focuses on the effects of overwintering conditions, including warm winter periods, snow, and snowmelt on boreal and sub-Arctic field layer plants. Wintertime photosynthesis and related physiological factors of evergreen dwarf shrubs, particularly of Vaccinium vitis-idaea, are emphasised. The work combines experiments both in the field and in growth chambers with measurements in natural field conditions. Evergreen dwarf shrubs are predominantly covered by snow in the winter. The protective snow cover provides favourable conditions for photosynthesis, especially during the spring before snowmelt. The results of this study indicate that photosynthesis occurs under the snow in V. vitis-idaea. The light response of photosynthesis determined in field conditions during the period of snow cover shows that positive net CO2 exchange is possible under the snow in the prevailing light and temperature. Photosynthetic capacity increases readily during warm periods in winter and the plants are thus able to replenish carbohydrate reserves lost through respiration. Exposure to low temperatures in combination with high light following early snowmelt can set back photosynthesis as sustained photoprotective measures are activated and photodamage begins to build up. Freezing may further decrease the photosynthetic capacity. The small-scale distribution of many field layer plants, including V. vitis-idaea and other dwarf shrubs, correlates with the snow distribution in a forest. The results of this study indicate that there are species-specific differences in the snow depth affinity of the field and ground layer species. Events and processes taking place in winter can have a profound effect on the overall performance of plants and on the interactions between plants and their environment. Understanding the processes involved in the overwintering of plants is increasingly important as the wintertime climate in the north is predicted to change in the future.
Resumo:
Before the spread of extensive settled cultivation, the Indian subcontinent would have been inhabited by territorial hunter–gatherers and shifting cultivators with cultural traditions of prudent resource use. The disruption of closed material cycles by export of agricultural produce to centres of non-agricultural population would have weakened these traditions. Indeed, the fire-based sacrificial ritual and extensive agricultural settlements might have catalysed the destruction of forests and wildlife and the suppression of tribal peoples during the agricultural colonization of the Gangetic plains. Buddhism, Jainism and later the Hindu sects may have been responses to the need for a reassertion of ecological prudence once the more fertile lands were brought under cultivation. British rule radically changed the focus of the country's resource use pattern from production of a variety of biological resources for local consumption to the production of a few commodities largely for export. The resulting ecological squeeze was accompanied by disastrous famines and epidemics between the 1860s and the 1920s. The counterflows to tracts of intensive agriculture have reduced such disasters since independence. However, these are quite inadequate to balance the state-subsidized outflows of resources from rural hinterlands. These imbalances have triggered serious environmental degradation and tremendous overcrowding of the niche of agricultural labour and marginal cultivator all over the country.
Resumo:
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis x Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.