783 resultados para Fieldwork Learning Framework
Resumo:
Les Tableaux de Bord de la Performance ont été acclamés avec raison depuis leur introduction en 1992, mais les intellectuels continuent encore à étudier leurs aspects pragmatiques. Ce papier contribue à la littérature sur les Tableaux de Bord de la Performance, tout d’abord, en offrant une explication logique quant à leur succès et ensuite, en présentant un cadre de travail contextuel de tableaux de bord de la performance pour une structure de gestion hiérarchisée. Le cadre de travail contextuel réforme la perspective d’apprentissage et de croissance du tableau de bord de la performance (i) en effectuant la transition de référence (subjective/objective), et (ii) en reconnaissant que la Perspective d’Apprentissage et de Croissance implique avant tout une incidence de formulation stratégique d’une extra-entité. Le transfert de l’incidence (intra-entité/extra-entité) réconcilie l’évolution de la position de politique de gestion non ordonnée [Contenu: (Contenu: Contexte): Contexte] qu’est la Perspective d’Apprentissage et de Croissance Concomitante. Le cadre de travail supplante également les Perspectives des Tableaux de Bord de la Performances développés par Kaplan et Norton en ajoutant la perspective de politique sociale qui manquait. La perspective manquante implique une transition de référence objective [(position endogène, perspective exogène): (position exogène, perspective exogène)]. De tels signaux de transition [Contenu: (Contenu: Contexte): Contexte] ordonnent l’évolution de la position de politique de gestion.
Resumo:
Les tendances de la participation à la formation des adultes au Canada n’ont pas évolué depuis des décennies, malgré les nouvelles influences économiques qui ont stimulé l’augmentation et la diversification permanente de la formation des employés et malgré les initiatives plus nombreuses en faveur de l’apprentissage des employés en milieu de travail. Il est donc nécessaire de ne plus se contenter d’étudier les prédicteurs de la formation déjà connus dans les profils des employés et des employeurs. Il est, en revanche, indispensable d’étudier les antécédents de la participation des employés à la formation, y compris les aspects et les étapes du processus qui la précède. Cette étude porte sur les antécédents de la participation des employés aux formations dans un important collège communautaire urbain en Ontario. Afin de préparer le recueil des données, un cadre théorique a été élaboré à partir du concept d’expression de la demande. Ce cadre implique l’existence d’un processus qui comporte plusieurs étapes, au cours desquelles plusieurs intervenants interagissent et dont la formation est susceptible d’être le résultat. Les résultats de l’enquête sur le profil d’apprentissage ont permis de conclure que le comportement des employés et de l’employeur est conforme aux modèles de prédicteurs existants et que les taux et les types de participation étaient similaires aux tendances nationales et internationales. L’analyse des entrevues d’un groupe d’employés atypiques, de leurs superviseurs, ainsi que de représentants du collège et du syndicat, a révélé d’importants thèmes clés : l’expression de la demande n’est pas structurée et elle est communiquée par plusieurs canaux, en excluant parfois les superviseurs. De plus, la place de l’auto évaluation est importante, ainsi que la phase de prise de décision. Ces thèmes ont souligné l’interaction de plusieurs intervenants dans le processus d’expression de la demande d’apprentissage et pendant la prise de décision. L’examen des attentes de chacun de ces intervenants au cours de ce processus nous a permis de découvrir un désir tacite chez les superviseurs et les employés, à savoir que la conversation soit à l’initiative de « l’autre ». Ces thèmes clés ont été ensuite abordés dans une discussion qui a révélé une discordance entre le profil de l’employeur et les profils des employés. Celle-ci se prête à la correction par l’employeur de son profil institutionnel pour l’harmoniser avec le profil dispositionnel des employés et optimiser ainsi vraisemblablement son offre de formation. Ils doivent, pour cela, appliquer un processus plus systématique et plus structuré, doté de meilleurs outils. La discussion a porté finalement sur les effets des motivations économiques sur la participation des employés et a permis de conclure que, bien que les employés ne semblent pas se méfier de l’offre de formation de l’employeur et que celle ci ne semble pas non plus les décourager, des questions de pouvoir sont bel et bien en jeu. Elles se sont principalement manifestées pendant le processus de prise de décision et, à cet égard, les superviseurs comme les employés reconnaissent qu’un processus plus structuré serait bénéfique, puisqu’il atténuerait les problèmes d’asymétrie et d’ambiguïté. Les constatations de cette étude sont pertinentes pour le secteur de la formation des adultes et de la formation en milieu de travail et, plus particulièrement, pour la méthodologie de recherche. Nous avons constaté l’avantage d’une méthodologie à deux volets, à l’écoute de l’employeur et des employés, afin de mieux comprendre la relation entre l’offre de formation et la participation à la formation. La définition des antécédents de la participation sous la forme d’un processus dans lequel plusieurs intervenants remplissent plusieurs rôles a permis de créer un modèle plus détaillé qui servira à la recherche future. Ce dernier a démontré qu’il est indispensable de reconnaître que la prise de décision constitue une étape à part entière, située entre l’expression de la demande et la participation à la formation. Ces constatations ont également révélé qu’il est véritablement indispensable que le secteur de la formation des adultes continue à traiter les questions reliées à la reconnaissance de la formation informelle. Ces conclusions et la discussion sur les constatations clés nous ont inspiré des recommandations à appliquer pour modifier les retombées du processus précédant la participation des employés à la formation. La majorité de ces recommandations ont trait à l’infrastructure de ce processus et ciblent donc principalement l’employeur. Certaines recommandations sont cependant destinées aux syndicats, aux superviseurs et aux employés qui peuvent aider l’employeur à remplir son rôle et favoriser la participation efficace de tous à ce processus. Les recommandations qui précédent impliquent que ce sont les antécédents de la formation qui gagneraient à être plus structurés et non la formation elle même. La structuration de l’infrastructure de l’apprentissage présente cependant des risques à elle seule. En liaison avec ce phénomène, une étude spécifique des effets de la nature, de la qualité et de l’asymétrie de la relation superviseur employé sur la participation des employés à la formation serait bénéfique. Mots clés : formation en entreprise, formation professionnelle continue, antécédents à la participation, employés de soutien
Resumo:
Quand le E-learning a émergé il ya 20 ans, cela consistait simplement en un texte affiché sur un écran d'ordinateur, comme un livre. Avec les changements et les progrès dans la technologie, le E-learning a parcouru un long chemin, maintenant offrant un matériel éducatif personnalisé, interactif et riche en contenu. Aujourd'hui, le E-learning se transforme de nouveau. En effet, avec la prolifération des systèmes d'apprentissage électronique et des outils d'édition de contenu éducatif, ainsi que les normes établies, c’est devenu plus facile de partager et de réutiliser le contenu d'apprentissage. En outre, avec le passage à des méthodes d'enseignement centrées sur l'apprenant, en plus de l'effet des techniques et technologies Web2.0, les apprenants ne sont plus seulement les récipiendaires du contenu d'apprentissage, mais peuvent jouer un rôle plus actif dans l'enrichissement de ce contenu. Par ailleurs, avec la quantité d'informations que les systèmes E-learning peuvent accumuler sur les apprenants, et l'impact que cela peut avoir sur leur vie privée, des préoccupations sont soulevées afin de protéger la vie privée des apprenants. Au meilleur de nos connaissances, il n'existe pas de solutions existantes qui prennent en charge les différents problèmes soulevés par ces changements. Dans ce travail, nous abordons ces questions en présentant Cadmus, SHAREK, et le E-learning préservant la vie privée. Plus précisément, Cadmus est une plateforme web, conforme au standard IMS QTI, offrant un cadre et des outils adéquats pour permettre à des tuteurs de créer et partager des questions de tests et des examens. Plus précisément, Cadmus fournit des modules telles que EQRS (Exam Question Recommender System) pour aider les tuteurs à localiser des questions appropriées pour leur examens, ICE (Identification of Conflits in Exams) pour aider à résoudre les conflits entre les questions contenu dans un même examen, et le Topic Tree, conçu pour aider les tuteurs à mieux organiser leurs questions d'examen et à assurer facilement la couverture des différent sujets contenus dans les examens. D'autre part, SHAREK (Sharing REsources and Knowledge) fournit un cadre pour pouvoir profiter du meilleur des deux mondes : la solidité des systèmes E-learning et la flexibilité de PLE (Personal Learning Environment) tout en permettant aux apprenants d'enrichir le contenu d'apprentissage, et les aider à localiser nouvelles ressources d'apprentissage. Plus précisément, SHAREK combine un système recommandation multicritères, ainsi que des techniques et des technologies Web2.0, tels que le RSS et le web social, pour promouvoir de nouvelles ressources d'apprentissage et aider les apprenants à localiser du contenu adapté. Finalement, afin de répondre aux divers besoins de la vie privée dans le E-learning, nous proposons un cadre avec quatre niveaux de vie privée, ainsi que quatre niveaux de traçabilité. De plus, nous présentons ACES (Anonymous Credentials for E-learning Systems), un ensemble de protocoles, basés sur des techniques cryptographiques bien établies, afin d'aider les apprenants à atteindre leur niveau de vie privée désiré.
Resumo:
La politique militaire de la France en Afrique est en évolution. La véracité factuelle de ce constat est désormais difficilement contestable. Ce changement s’observe d’abord dans le discours où l’on parle de plus en plus d’anciennes pratiques dépassées et reconnaît que ce qui était politiquement possible et admis il y a vingt ans ne l’est plus aujourd’hui. Ce processus s’incarne ensuite dans la modification des instruments d’action ainsi que dans les modes et les niveaux d’utilisation de ces instruments. Partant de ces considérations, le présent travail se propose d’examiner les facteurs à l’origine de cette évolution. Il part des réponses jusqu’ici proposées pour apporter un éclairage nouveau au sujet des forces et dynamiques à la base des changements annoncés ou observés. Contrairement à la littérature existante qui a jusqu’ici privilégié les approches matérialistes et utilitaristes pour expliquer les transformations entreprises et celles promises dans la politique militaire africaine de la France, cette étude propose, à l’inverse, une perspective inspirée des approches cognitives et axée sur le processus d’apprentissage. Ainsi, plutôt que de voir dans les réformes ici analysées le résultat exclusif de changements structurels ou systémiques survenus dans l’environnement économique, social ou international des États, notre analyse fera davantage valoir que cette transformation a pour l’essentiel été une adaptation faite à la lumière des leçons tirées d’expériences antérieures. Cette analyse s’appuie sur l’Advocacy Coalition Framework. Développée par Paul A Sabatier et ses collègues, il postule que la prise de décision en matière de politique publique peut être mieux comprise comme une compétition entre coalitions de cause, chacune étant constituée d’acteurs provenant d’une multitudes d’institutions (leaders de groupes d’intérêt, agences administratives, chercheurs, journalistes) qui partagent un système de croyances lié à l’action publique et qui s’engagent dans un effort concerté afin de traduire des éléments de leur système de croyances en une politique publique.
Resumo:
La formation à distance (FAD) est de plus en plus utilisée dans le cadre de la formation des enseignants aux technologies de l’information et de la communication (TIC). Dans les pays en voie de développement, elle permet non seulement de réduire les coûts par rapport à une formation traditionnelle, mais aussi de modéliser des pratiques pédagogiques exemplaires qui permettent de maximiser le recours aux TIC. En ce sens, la formation continue des enseignants aux TIC par des cours à distance qui intègrent des forums de discussion offre plusieurs avantages pour ces pays. L’évaluation des apprentissages réalisés dans les forums reste cependant un problème complexe. Différents modèles et différentes procédures d’évaluation ont été proposés par la littérature, mais aucun n’a encore abordé spécifiquement la culture e-learning des participants telle qu’elle est définie par le modèle IntersTICES (Viens, 2007 ; Viens et Peraya, 2005). L’objectif de notre recherche est l’élaboration d’une grille opérationnelle pour l’analyse de la culture e-learning à partir des contenus de différents forums de discussion utilisés comme activité de formation dans un cours à distance. Pour développer cette grille, nous utiliserons une combinaison de modèles recensés dans la revue de littérature afin de circonscrire les principaux concepts et indicateurs à prendre en compte pour ensuite suivre les procédures relatives à l’analyse de la valeur, une méthodologie qui appelle la production d’un cahier des charges fonctionnel, la production de l’outil, puis sa mise à l’essai auprès d’experts. Cette procédure nous a permis de mettre sur pied une grille optimale, opérationnelle et appuyée par une base théorique et méthodologique solide.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
This thesis attempts to quantify the amount of information needed to learn certain tasks. The tasks chosen vary from learning functions in a Sobolev space using radial basis function networks to learning grammars in the principles and parameters framework of modern linguistic theory. These problems are analyzed from the perspective of computational learning theory and certain unifying perspectives emerge.
Resumo:
There are many learning problems for which the examples given by the teacher are ambiguously labeled. In this thesis, we will examine one framework of learning from ambiguous examples known as Multiple-Instance learning. Each example is a bag, consisting of any number of instances. A bag is labeled negative if all instances in it are negative. A bag is labeled positive if at least one instance in it is positive. Because the instances themselves are not labeled, each positive bag is an ambiguous example. We would like to learn a concept which will correctly classify unseen bags. We have developed a measure called Diverse Density and algorithms for learning from multiple-instance examples. We have applied these techniques to problems in drug design, stock prediction, and image database retrieval. These serve as examples of how to translate the ambiguity in the application domain into bags, as well as successful examples of applying Diverse Density techniques.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes which, when trained on natural images, produces a set of basis functions that are spatially localized, oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithm may be interpreted within a maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously fixed.
Resumo:
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well.
Resumo:
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the likelihood-based and the Bayesian. The goal is two-fold: to place current neural network approaches to missing data within a statistical framework, and to describe a set of algorithms, derived from the likelihood-based framework, that handle clustering, classification, and function approximation from incomplete data in a principled and efficient manner. These algorithms are based on mixture modeling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster, Laird, and Rubin 1977)---both for the estimation of mixture components and for coping with the missing data.