889 resultados para Ethylene Signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments with N//2O were carried out with a view to obtaining additional information about the reactivity of oxygen surface species. On clean Ag, N//2O decomposition was found to be an activated process which led exclusively to the deposition of O(a) species. The presence of preadsorbed oxygen or subsurface oxygen served to enhance the deposition rate of O(a). Subsequent dosing with ethylene at 300 K of such an oxygen-populated surface followed by TPR examination showed it to be active for ethylene oxide formation. Control experiments established that adventitious decomposition of N//2O at the reactor walls or specimen supports followed by possible re-absorption of O//2(a) was an entirely negligible process. ) The oxidation activity of N//2O was also investigated at elevated pressures in the batch reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver-catalysed oxidation of ethylene has been examined on the (III) face of a single crystal by a combination of electron spectroscopy and kinetic measurements at pressures of up to 50 Torr. The necessary and sufficient conditions for ethylene oxide formation are established, reaction intermediates are identified, kinetic isotope effects are observed and the role of Cs in modifying reaction selectivity is examined. It is shown that surface alkali exhibits opposite effects on the reactions which lead to the further oxidation of ethylene oxide and on the direct combustion of ethylene. © 1984.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erratun publicado en Frontiers in Cellular Neuroscience 7 : (2013) // Article ID 107

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. Methods: To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. Results: In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12-8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. Conclusions: TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model has been developed to investigate the microfluidic transport of the signaling chemicals in the cell coculture chips. Using an epidermal growth factor (EGF)-like growth factor as the sample chemical, the effects of velocities and channel geometry were studied for the continuous-flow microchannel bioreactors. It is found that different perfusion velocities must be applied in the parallel channels to facilitate the communication, i.e., transport of the signaling component, between the coculture channels. Such communication occurs in a unidirectional way because the signaling chemicals can only flow from the high velocity area to the low velocity area. Moreover, the effect of the transport of the signaling component between the coculture channels on the growth of the monolayer cells and the multicellular tumor spheroid (MTS) in the continuous-flow coculture environment were simulated using 3D models. The numerical results demonstrated that the concentration gradients will induce the heterogeneous growth of the cells and the MTSs, which should be taken into account in designing the continuous-flow perfusion bioreactor for the cell coculture research.