926 resultados para Dynamique inverse
Resumo:
Surface size analyses of Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers and Cazenovia Creek show three distinct types of bed-surface sediment: 1) a "continuous" armor coat which has a mean size of -6.5 phi and coarser, 2) a "discontinuous" armor coat which has a mean size of approximately -6.0 phi and 3) a bed with no armor coat which has a mean surface size of -5.0 phi and finer. The continuous armor coat completely covers and protects the subsurface from the flow. The discontinuous armor coat is composed of intermittently-spaced surface clasts, which provide the subsurface with only limited protection from the flow. The bed with no armor coat allows complete exposure of the subsurface to the flow. The subsurface beneath the continuous armor coats of Twenty and Sixteen Mile Creeks is possibly modified by a "vertical winnowing" process when the armor coat is p«natrat«d. This process results in a welld «v«loped inversely graded sediment sequence.vertical winnowing is reduced beneath the discontinuous armor coats of the Grand and Genesee Rivers. The reduction of vertical winnowing results in a more poorly-developed inverse grading than that found in Twenty and sixteen Mile Creeks. The streambed of Cazenovia Creek normally is not armored resulting in a homogeneous subsurface which shows no modification by vertical winnowing. This streambed forms during waning or moderate flows, suggesting it does not represent the maximum competence of the stream. Each population of grains in the subsurface layers of Twenty and sixteen Mile Creeks has been modified by vertical winnowing and does not represent a mode of transport. Each population in the subsurface layers beneath a discontinuous armor coat may partially reflect a transport mode. These layers are still inversely graded suggesting that each population is affected to some degree by vertical winnowing. The populations for sediment beneath a surface which is not armored are probably indicative of transport modes because such sediment has not been modified by vertical winnowing. Bed photographs taken in each of the five streams before and after the 1982-83 snow-melt show that the probability of movement for the surface clasts is a function of grain size. The greatest probability of of clast movement and scour depth of this study were recorded on Cazenovia Creek in areas where no armor coat is present. The scour depth in the armored beds of Twenty and Sixteen Mile Creeks is related to the probability of movement for a given mean surface size.
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free
Resumo:
Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
Rapport de recherche
La Politique de Distribution de Dividendes des Societes: Modele Generalise Ou D'ajustement Dynamique
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche