966 resultados para Diarrhea Viruses, Bovine Viral


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil viruses are potentially of great importance as they may influence the ecology and evolution of soil biological communities through both an ability to transfer genes from host to host and as a potential cause of microbial mortality. Despite this importance, the area of soil virology is understudied. Here, we report the isolation and preliminary characterisation of viruses from soils in the Dundee area of Scotland. Different virus morphotypes including tailed, polyhedral (spherical), rod shaped, filamentous and bacilliform particles were detected in the soil samples. An apparent predominance of small spherical and filamentous bacteriophages was observed, whereas tailed bacteriophages were significantly less abundant. In this report, we also present observations and characterisation of viruses from different soil functional domains surrounding wheat roots: rhizosheath, rhizosphere and bulk soil. In spite of the differences in abundance of bacterial communities in these domains, no significant variations in viral population structure in terms of morphology and abundance were found. Typically, there were approximately 1.1–1.2 × 109 virions g−1 dry weight, implicating remarkable differences in virus-to-bacteria ratios in domains close to roots, rhizosphere and rhizosheath (approximately 0.27) and in bulk soil (approximately 4.68).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an investigation for 16 bacteria and viruses among 184 children hospitalized with pneumonia in Salvador, Brazil. Etiology was established in 144 (78%) cases. Viral, bacterial, and mixed infections were found in 110 (60%), 77 (42%), and 52 (28%) patients, respectively. Rhinovirus (21%) and Streptococcus pneumoniae (21%) were the most common pathogens. Our results demonstrate the importance of viral and pneumococcal infections among those patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : Acute respiratory illnesses (ARIs) during childhood are often caused by respiratory viruses, result in significant morbidity, and have associated costs for families and society. Despite their ubiquity, there is a lack of interdisciplinary epidemiologic and economic research that has collected primary impact data, particularly associated with indirect costs, from families during ARIs in children.
Methods : We conducted a 12-month cohort study in 234 preschool children with impact diary recording and PCR testing of nose-throat swabs for viruses during an ARI. We used applied values to estimate a virus-specific mean cost of ARIs.
Results : Impact diaries were available for 72% (523/725) of community-managed illnesses between January 2003 and January 2004. The mean cost of ARIs was AU$309 (95% confidence interval $263 to $354). Influenza illnesses had a mean cost of $904, compared with RSV, $304, the next most expensive single-virus illness, although confidence intervals overlapped. Mean carer time away from usual activity per day was two hours for influenza ARIs and between 30 and 45 minutes for all other ARI categories.
Conclusion : From a societal perspective, community-managed ARIs are a significant cost burden on families and society. The point estimate of the mean cost of community-managed influenza illnesses in healthy preschool aged children is three times greater than those illnesses caused by RSV and other respiratory viruses. Indirect costs, particularly carer time away from usual activity, are the key cost drivers for ARIs in children. The use of parent-collected specimens may enhance ARI surveillance and reduce any potential Hawthorne effect caused by compliance with study procedures. These findings reinforce the need for further integrated epidemiologic and economic research of ARIs in children to allow for comprehensive cost-effectiveness assessments of preventive and therapeutic options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stem-loop termed the kissing-loop hairpin is one of the most highly conserved structures within the leader of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus genomic RNA. Because it plays a key role in the in vitro dimerization of short HIV-1 RNA transcripts (M. Laughrea and L. Jette, Biochemistry 35:1589-1598, 1996, and references therein; M. Laughrea and L. Jette, Biochemistry 35:9366-9374, 1996, and references therein) and because dimeric RNAs may be preferably encapsidated into the HIV-1 virus, alterations of the kissing-loop hairpin might affect the in vivo dimerization and encapsidation processes. Accordingly, substitution and deletion mutations were introduced into the kissing-loop hairpin of an infectious HIV-1 molecular clone in order to produce viruses by transfection methods. The infectivity of the resulting viruses was decreased by at least 99%, the amount of genomic RNA packaged per virus was decreased by 50 to 75%, and the proportion of dimeric genomic RNA was reduced from >80 to 40 to 50%, but the dissociation temperature of the genomic RNA was unchanged. There is evidence suggesting that the deletion mutations moderately inhibited CAp24 production but had no significant effect on RNA splicing. These results are consistent with the kissing-loop model of HIV-1 RNA dimerization. In fact, because intracellular viral RNAs are probably more concentrated in transfected cells than in cells infected by one virus and because the dimerization and encapsidation processes are concentration dependent, it is likely that much larger dimerization and encapsidation defects would have been manifested within cells infected by no more than one virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the stability of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) suspended in either fish processing plant effluent blood water (EBW) or culture media and examined the effectiveness of UVC radiation to inactivate IHNV and VHSV suspended in both solutions. Without exposure to UVC, IHNV and VHSV were maintained in 4°C blood water for up to 48 hours without significant reduction in virus titer. However when exposed to UVC radiation using a low pressure mercury vapour lamp collimated beam, IHNV and VHSV were inactivated, and the efficacy of UVC radiation was dependent upon the solution and virus type being treated. A 3-log reduction for VHSV and IHNV in culture media was achieved at 3.28 and 3.84 mJ cm-2, respectively. The UV dose needed for a 3-log reduction of VHSV in EBW was 3.82 mJ cm-2. However, exposure of IHNV in EBW to the maximum UVC dose tested (4.0 mJ cm-2) only led to a 2.26-log-reduction. Factors such as particle size, and possible association of viruses with suspended EBW particulate, were not investigated in this study, but may have contributed to the difference in UVC effectiveness. Future work should emphasize improved filtration methods prior to UV treatment of processing plant EBW at an industrial scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis is a major health related disease spread worldwide with frequent occurrence of epidemics. It is a zoonotic disease which leads to jaundice, anorexia, malaise and death. Although, vaccines have been developed against hepatitis A and hepatitis B, it is a challenge to generate vaccines against other prevalent forms of hepatitis which are equally harmful and spread worldwide. Natural products that are obtained from living organisms and found freely in nature have proven to be effective against several types of hepatitis due to presence of pharmacologically important bioactive compounds. Since they are natural products they do not cause much harm to body and can be easily applied or consumed. Our main focus is on hepatitis E virus (HEV) which is an opportunistic pathogen and leads to acute jaundice. This virus is mainly present in developing countries with poor sanitation facilities and effects individuals having weak immune response, mainly children, old people, organ transplant patients and pregnant women. HEV infection makes the patient more susceptible to infections from other viruses as well as HIV. In this review, we discussed about the natural protein known as lactoferrin which is isolated from milk colostrum and extracts of some medicinal plants that have proven to be effective against various forms of hepatitis. Such form of natural therapies forms the basis of modern medicine and major pharmaceutical discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78-80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Live recombinant influenza viruses were successfully used as HIV vaccine vectors in a mouse model. Following intranasal prime-boost vaccination, HIV-specific CD8+ T cell responses were detected in the spleen, broncho-alveolar lavage, mediastinal and inguinal lymph nodes. HIV+α4β7+ CD8+ T cells contributed to protection in pseudo-challenge experiments using recombinant vaccinia virus expressing HIV antigens. This research highlights the importance of mucosal CD8+ T cells in viral immunity and emphasizes the need for additional studies to provide key insights to underpin future vaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)